Perl Programmers Reference Guide

Version 5.005 02
18-0Oct-1998

"There’s more than one way to do it."
—— Larry Wall, Author of the Perl Programming Language

Author: Perl5—-Porters

blank

INSTALL Perl Programmers Reference Guide INSTALL

NAME
Install — Build and Installation guide for perl5.

SYNOPSIS
The basic steps to build and install perl5 on a Unix system are:

rm —f config.sh Policy.sh
sh Configure

make

make test

make install

You may also wish to add these:

(cd /usr/include && h2ph *.h sys/*.h)

(installhtml ——help)

(cd pod && make tex && <process the latex files>)

Each of these is explained in further detail below.
For information on non—Unix systems, see the sectiotPorting information"below.

For information on what's new in this release, see the pod/perldelta.pod file. For more detailed information
about specific changes, see the Changes file.

DESCRIPTION

This document is written in pod format as an easy way to indicate its structure. The pod format is described
in pod/perlpod.pod, but you can read it as is with any pager or editor. Headings and items are marked by
lines beginning with ‘=". The other mark—up used is

B<text> embolden text, used for switches, programs or commands
C<code> literal code
L<name> A link (cross reference) to name

You should probably at least skim through this entire document before proceeding.

If you're building Perl on a non-Unix system, you should also read the README file specific to your
operating system, since this may provide additional or different instructions for building Perl.

If there is a hint file for your system (in the hints/ directory) you should also read that hint file for specific
information for your system. (Unixware users should use the svr4.sh hint file.)

WARNING: This version is not binary compatible with Perl 5.004.

Starting with Perl 5.004_50 there were many deep and far-reaching changes to the language internals. If
you have dynamically loaded extensions that you built under perl 5.003 or 5.004, you can continue to use
them with 5.004, but you will need to rebuild and reinstall those extensions to use them 5.005. See the
discussions below ofCoexistence with earlier versions of perlahd"Upgrading from 5.004 to 5.005for

more details.

The standard extensions supplied with Perl will be handled automatically.

In a related issue, old extensions may possibly be affected by the changes in the Perl language in the current
release. Please see pod/perldelta.pod for a description of what's changed.

Space Requirements

The complete perl5 source tree takes up about 10 MB of disk space. The complete tree after completing
make takes roughly 20 MB, though the actual total is likely to be quite system—dependent. The installation
directories need something on the order of 10 MB, though again that value is system—dependent.

18-0Oct-1998 Version 5.005_02 3

INSTALL Perl Programmers Reference Guide INSTALL

Start with a Fresh Distribution
If you have built perl before, you should clean out the build directory with the command

make distclean
or
make realclean

The only difference between the two is that make distclean also removes your old config.sh and Policy.sh
files.

The results of a Configure run are stored in the config.sh and Policy.sh files. If you are upgrading from a
previous version of perl, or if you change systems or compilers or make other significant changes, or if you
are experiencing difficulties building perl, you should probably not re-use your old config.sh. Simply
remove it or rename it, e.g.

mv config.sh config.sh.old

If you wish to use your old config.sh, be especially attentive to the version and architecture-specific
guestions and answers. For example, the default directory for architecture—dependent library modules
includes the version name. By default, Configure will reuse your old name (e.g.
/opt/perl/lib/iB6pc—solaris/5.003) even if you‘re running Configure for a different version, e.g. 5.004. Yes,
Configure should probably check and correct for this, but it doesn‘t, presently. Similarly, if you used a
shared libperl.so (see below) with version numbers, you will probably want to adjust them as well.

Also, be careful to check your architecture name. Some Linux systems (such as Debian) use i386, while
others may use 486, i586, or i686. If you pick up a precompiled binary, it might not use the same name.

In short, if you wish to use your old config.sh, | recommend running Configure interactively rather than
blindly accepting the defaults.

If your reason to reuse your old config.sh is to save your particular installation choices, then you can
probably achieve the same effect by using the new Policy.sh file. See the section on
"Site—wide Policy settingstelow.

Run Configure

Configure will figure out various things about your system. Some things Configure will figure out for itself,
other things it will ask you about. To accept the default, just press RETURN. The default is almost always
okay. At any Configure prompt, you can tyge-d and Configure will use the defaults from then on.

After it runs, Configure will perform variable substitution on all the *.SH files and offer to run make depend.

Configure supports a number of useful options. Ranfigure —h to get a listing. See the Porting/Glossary
file for a complete list of Configure variables you can set and their definitions.

To compile with gcc, for example, you should run
sh Configure —Dcc=gcc

This is the preferred way to specify gcc (or another alternative compiler) so that the hints files can set
appropriate defaults.

If you want to use your old config.sh but override some of the items with command line options, you need to
useConfigure —-O.

By default, for most systems, perl will be installed in /usr/local/{bin, lib, man}. You can specify a different
‘prefix’ for the default installation directory, when Configure prompts you or by using the Configure
command line option —Dprefix="/some/directory‘, e.g.

sh Configure —Dprefix=/opt/perl

4 Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

If your prefix contains the string "perl”, then the directories are simplified. For example, if you use
prefix=/opt/perl, then Configure will suggest /opt/perl/lib instead of /opt/perl/lib/perl5/.

NOTE: You must not specify an installation directory that is below your perl source directory. If you do,
installperl will attempt infinite recursion.

It may seem obvious to say, but Perl is useful only when users can easily find it. It's often a good idea to
have both /usr/bin/perl and /usr/local/bin/perl be symlinks to the actual binary. Be especially careful,

however, of overwriting a version of perl supplied by your vendor. In any case, system administrators are
strongly encouraged to put (symlinks to) perl and its accompanying utilities, such as perldoc, into a directory
typically found along a user's PATH, or in another obvious and convenient place.

By default, Configure will compile perl to use dynamic loading if your system supports it. If you want to
force perl to be compiled statically, you can either choose this when Configure prompts you or you can use
the Configure command line option —UusedlI.

If you are willing to accept all the defaults, and you want terse output, you can run
sh Configure —des

For my Solaris system, | usually use
sh Configure —Dprefix=/opt/perl —Doptimize="-xpentium —xO4’ —des

GNU-style configure

If you prefer the GNU-style configure command line interface, you can use the supplied configure.gnu

command, e.g.
CC=gcc ./configure.gnu

The configure.gnu script emulates a few of the more common configure options. Try
Jconfigure.gnu ——help

for a listing.

Cross compiling is not supported.

(The file is called configure.gnu to avoid problems on systems that would not distinguish the files
"Configure" and "configure".)

Extensions

By default, Configure will offer to build every extension which appears to be supported. For example,
Configure will offer to build GDBM_File only if it is able to find the gdbm library. (See examples below.)

B, Dynaloader, Fcntl, 10, and attrs are always built by default. Configure does not contain code to test for
POSIX compliance, so POSIX is always built by default as well. If you wish to skip POSIX, you can set the
Configure variable useposix=false either in a hint file or from the Configure command line. Similarly, the
Opcode extension is always built by default, but you can skip it by setting the Configure variable
useopcode=false either in a hint file for from the command line.

You can learn more about each of these extensions by consulting the documentation in the individual .pm
modules, located under the ext/ subdirectory.

Even if you do not have dynamic loading, you must still build the DynalLoader extension; you should just
build the stub dI_none.xs version. (Configure will suggest this as the default.)

In summary, here are the Configure command-line variables you can set to turn off each extension:

B (Always included by default)

DB_File i_db

Dynal oader (Must always be included as a static extension)
Fentl (Always included by default)

GDBM _File i_gdbm

10 (Always included by default)

18-0Oct-1998 Version 5.005_02 5

INSTALL Perl Programmers Reference Guide INSTALL

NDBM_File i_ndbm

ODBM _File i_dbm

POSIX useposix

SDBM_File (Always included by default)
Opcode useopcode

Socket d_socket

Threads usethreads

attrs (Always included by default)

Thus to skip the NDBM_File extension, you can use
sh Configure —Ui_ndbm
Again, this is taken care of automatically if you don‘t have the ndbm library.
Of course, you may always run Configure interactively and select only the extensions you want.

Note: The DB_File module will only work with version 1.x of Berkeley DB or newer releases of version 2.
Configure will automatically detect this for you and refuse to try to build DB_File with version 2.

If you re—use your old config.sh but change your system (e.g. by adding libgdbm) Configure will still offer
your old choices of extensions for the default answer, but it will also point out the discrepancy to you.

Finally, if you have dynamic loading (most modern Unix systems do) remember that these extensions do not
increase the size of your perl executable, nor do they impact start—up time, so you probably might as well
build all the ones that will work on your system.

Including locally-installed libraries

Perl5 comes with interfaces to number of database extensions, including dom, ndbm, gdbm, and Berkeley
db. For each extension, if Configure can find the appropriate header files and libraries, it will automatically
include that extension. The gdbm and db libraries are not included with perl. See the library documentation
for how to obtain the libraries.

Note: If your database header (.h) files are not in a directory normally searched by your C compiler, then
you will need to include the appropriate —l/your/directory option when prompted by Configure. If your
database library (.a) files are not in a directory normally searched by your C compiler and linker, then you
will need to include the appropriate —L/your/directory option when prompted by Configure. See the
examples below.

Examples

gdbm in /usr/local

Suppose you have gdbm and want Configure to find it and build the GDBM_File extension. This
examples assumes you have gdbm.h installed in /usr/local/include/gdbm.h and libgdbm.a installed in
/usr/local/lib/libgdbm.a. Configure should figure all the necessary steps out automatically.

Specifically, when Configure prompts you for flags for your C compiler, you should include
—l/usr/local/include.

When Configure prompts you for linker flags, you should include —L/usr/local/lib.

If you are using dynamic loading, then when Configure prompts you for linker flags for dynamic
loading, you should again include -L/ust/local/lib.

Again, this should all happen automatically. If you want to accept the defaults for all the questions and
have Configure print out only terse messages, then you can just run

sh Configure —des
and Configure should include the GDBM_File extension automatically.

This should actually work if you have gdbm installed in any of (/usr/local, /opt/local, /usr/gnu,
/opt/gnu, /usr/GNU, or /opt/GNU).

6 Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

gdbm in /usr/you

Suppose you have gdbm installed in some place other than /usr/local/, but you still want Configure to
find it. To be specific, assume you have /usr/you/include/gdbm.h and /usr/you/lib/libgdbm.a. You still
have to add -l/usr/you/include to cc flags, but you have to take an extra step to help Configure find
libgdbm.a. Specifically, when Configure prompts you for library directories, you have to add
/usrlyoullib to the list.

It is possible to specify this from the command line too (all on one line):

sh Configure —des \
—Dlocincpth="/usr/you/include” \
—Dloclibpth="/usr/you/lib"

locincpth is a space-separated list of include directories to search. Configure will automatically add
the appropriate I directives.

loclibpth is a space—separated list of library directories to search. Configure will automatically add the
appropriate —L directives. If you have some libraries under /usr/local/ and others under /usr/you, then
you have to include both, namely

sh Configure —des \
—Dlocincpth="/usr/you/include /usr/local/include" \
—Dloclibpth="/usr/you/lib /usr/local/lib"

Installation Directories
The installation directories can all be changed by answering the appropriate questions in Configure. For
convenience, all the installation questions are near the beginning of Configure.

I highly recommend running Configure interactively to be sure it puts everything where you want it. At any
point during the Configure process, you can answer a question &itth and Configure will use the
defaults from then on.

By default, Configure will use the following directories for library files for 5.005 (archname is a string like
sun4-sunos, determined by Configure).

Configure variable Default value
$archlib lusr/local/lib/perl5/5.005/archname
$privlib {usr/local/lib/perl5/5.005
$sitearch lusr/local/lib/perl5/site_perl/5.005/archname
$sitelib lusr/local/lib/perl5/site_perl/5.005

Some users prefer to append a "/sharebpoviib and$sitelib to emphasize that those directories
can be shared among different architectures.

By default, Configure will use the following directories for manual pages:

Configure variable Default value
$manldir {usr/local/man/manl
$man3dir {usr/local/lib/perl5/man/man3

(Actually, Configure recognizes the SVR3-style /usr/local/man/l_man/manl directories, if present, and uses
those instead.)

The module man pages are stuck in that strange spot so that they don‘t collide with other man pages stored in
/usr/local/man/man3, and so that Perl's man pages don‘t hide system man pages. On somargystems,
lesswould end up calling up Perl's less.pm module man page, rather than the less program. (This default
location will likely change to /usr/local/man/man3 in a future release of perl.)

Note: Many users prefer to store the module man pages in /usr/local/man/man3. You can do this from the
command line with

18-0Oct-1998 Version 5.005_02 7

INSTALL Perl Programmers Reference Guide INSTALL

sh Configure —Dman3dir=/ust/local/man/man3
Some users also prefer to use a .3pm suffix. You can do that with
sh Configure -Dman3ext=3pm

If you specify a prefix that contains the string "perl”, then the directory structure is simplified. For example,
if you Configure with —Dprefix=/opt/perl, then the defaults for 5.005 are

Configure variable Default value
$archlib /opt/perl/lib/5.005/archname
$privlib lopt/perl/lib/5.005
$sitearch lopt/perl/lib/site_perl/5.005/archname
$sitelib /opt/perl/lib/site_perl/5.005
$manldir /opt/perl/man/manl
$man3dir /opt/perl/man/man3

The perl executable will search the libraries in the order given above.

The directories under site_perl are empty, but are intended to be used for installing local or site-wide
extensions. Perl will automatically look in these directories.

In order to support using things like #!/usr/local/bin/perl5.005 after a later version is released,
architecture—dependent libraries are stored in a version—specific directory, such as
{usr/local/lib/perl5/archname/5.005/.

Further details about the installation directories, maintenance and development subversions, and about
supporting multiple versions are discussetfdnexistence with earlier versions of peri&low.

Again, these are just the defaults, and can be changed as you run Configure.

Changing the installation directory

Configure distinguishes between the directory in which perl (and its associated files) should be installed and
the directory in which it will eventually reside. For most sites, these two are the same; for sites that use AFS,

this distinction is handled automatically. However, sites that use software such as depot to manage software
packages may also wish to install perl into a different directory and use that management software to move
perl to its final destination. This section describes how to do this. Someday, Configure may support an

option —Dinstallprefix=/foo to simplify this.

Suppose you want to install perl under the /tmp/perl5 directory. You can edit config.sh and change all the
install* variables to point to /tmp/perl5 instead of /usr/local/wherever. Or, you can automate this process by
placing the following lines in a file config.over before you run Configure (replace /tmp/perl5 by a directory
of your choice):

installprefix=/tmp/perl5

test —d $installprefix || mkdir $installprefix

test —d Sinstallprefix/bin || mkdir $installprefix/bin
installarchlib="echo S$installarchlib | sed "s!$prefix!$installprefix!"
installbin="echo S$installbin | sed "s!$prefix!$installprefix!™
installmanldir="echo $installmanldir | sed "s!$prefix!$installprefix!"
installman3dir="echo $installman3dir | sed "s!$prefix!$installprefix!"
installprivlib="echo $installprivlib | sed "s!$prefix!$installprefix!™
installscript="echo $installscript | sed "s!$prefix!$installprefix!"
installsitelib="echo $installsitelib | sed "s!$prefix!$installprefix!"
installsitearch="'echo $installsitearch | sed "s!$prefix!$installprefix!™

Then, you can Configure and install in the usual way:

sh Configure —des
make
make test

8 Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

make install

Beware, though, that if you go to try to install new add-on extensions, they too will get installed in under
‘ftmp/perl5’ if you follow this example. The next section shows one way of dealing with that problem.

Creating an installable tar archive

If you need to install perl on many identical systems, it is convenient to compile it once and create an archive
that can be installed on multiple systems. Here's one way to do that:

Set up config.over to install perl into a different directory,
e.g. /tmp/perl5 (see previous part).

sh Configure —des

make

make test

make install

cd /tmp/perl5

Edit $archlib/Config.pm to change all the

install* variables back to reflect where everything will
really be installed.

Edit any of the scripts in $scriptdir to have the correct
#l/lwherever/perl line.

tar cvf ../perl5—archive.tar .

Then, on each machine where you want to install perl,
cd /usr/local # Or wherever you specified as $prefix

tar xvf perl5-archive.tar

Site—wide Policy settings
After Configure runs, it stores a number of common site-wide "policy" answers (such as installation
directories and the local perl contact person) in the Policy.sh file. If you want to build perl on another

system using the same policy defaults, simply copy the Policy.sh file to the new system and Configure will
use it along with the appropriate hint file for your system.

Alternatively, if you wish to change some or all of those policy answers, you should
rm —f Policy.sh

to ensure that Configure doesn‘t re—use them.

Further information is in the Policy_sh.SH file itself.

Configure-time Options
There are several different ways to Configure and build perl for your system. For most users, the defaults are
sensible and will work. Some users, however, may wish to further customize perl. Here are some of the
main things you can change.

Threads
On some platforms, perl5.005 can be compiled to use threads. To enable this, read the file
README .threads, and then try

sh Configure —Dusethreads

Currently, you need to specify —Dusethreads on the Configure command line so that the hint files can make
appropriate adjustments.

The default is to compile without thread support.

Selecting File 10 mechanisms

Previous versions of perl used the standard 10 mechanisms as defined in stdio.h. Versions 5.003_02 and
later of perl allow alternate IO mechanisms via a "PerllO" abstraction, but the stdio mechanism is still the
default and is the only supported mechanism.

18-0Oct-1998 Version 5.005_02 9

INSTALL Perl Programmers Reference Guide INSTALL

This PerllO abstraction can be enabled either on the Configure command line with
sh Configure —Duseperlio
or interactively at the appropriate Configure prompt.

If you choose to use the PerllO abstraction layer, there are two (experimental) possibilities for the underlying
IO calls. These have been tested to some extent on some platforms, but are not guaranteed to work
everywhere.

1. AT&T's "sfio". This has superior performance to stdio.h in many cases, and is extensible by the use
of "discipline" modules. Sfio currently only builds on a subset of the UNIX platforms perl supports.
Because the data structures are completely different from stdio, perl extension modules or external
libraries may not work. This configuration exists to allow these issues to be worked on.

This option requires the ‘sfio’ package to have been built and installed. A (fairly old) version of sfio is
in CPAN.

You select this option by
sh Configure —Duseperlio —Dusesfio

If you have already selected —Duseperlio, and if Configure detects that you have sfio, then sfio will be
the default suggested by Configure.

Note: On some systems, sfio's iffe configuration script fails to detect that you have an atexit function
(or equivalent). Apparently, this is a problem at least for some versions of Linux and SunOS 4.

You can test if you have this problem by trying the following shell script. (You may have to add some
extra cflags and libraries. A portable version of this may eventually make its way into Configure.)

#1/bin/sh
cat > try.c <<’EOCP’
#include <stdio.h>
main() { printf("42\n"); }
EOCP
cc —o try try.c —lsfio
val="./try*
if test X$val = X42; then
echo "Your sfio looks ok"
else
echo "Your sfio has the exit problem.”
fi

If you have this problem, the fix is to go back to your sfio sources and correct iffe's guess about atexit.
There also might be a more recent release of Sfio that fixes your problem.

2. Normal stdio 10, but with all 10 going through calls to the PerllO abstraction layer. This configuration
can be used to check that perl and extension modules have been correctly converted to use the PerllO
abstraction.

This configuration should work on all platforms (but might not).
You select this option via:
sh Configure —Duseperlio —Uusesfio

If you have already selected —Duseperlio, and if Configure does not detect sfio, then this will be the
default suggested by Configure.

10 Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

Building a shared libperl.so Perl library

Currently, for most systems, the main perl executable is built by linking the "perl library" libperl.a with
perlmain.o, your static extensions (usually just Dynal.oader.a) and various extra libraries, such as —Im.

On some systems that support dynamic loading, it may be possible to replace libperl.a with a shared
libperl.so. If you anticipate building several different perl binaries (e.g. by embedding libperl into different
programs, or by using the optional compiler extension), then you might wish to build a shared libperl.so so
that all your binaries can share the same library.

The disadvantages are that there may be a significant performance penalty associated with the shared
libperl.so, and that the overall mechanism is still rather fragile with respect to different versions and
upgrades.

In terms of performance, on my test system (Solaris 2.5 x86) the perl test suite took roughly 15% longer to
run with the shared libperl.so. Your system and typical applications may well give quite different results.

The default name for the shared library is typically something like libperl.s0.3.2 (for Perl 5.003_02) or
libperl.s0.302 or simply libperl.so. Configure tries to guess a sensible naming convention based on your C
library name. Since the library gets installed in a version—specific architecture—dependent directory, the
exact name isn‘t very important anyway, as long as your linker is happy.

For some systems (mostly SVR4), building a shared libperl is required for dynamic loading to work, and
hence is already the default.

You can elect to build a shared libperl by
sh Configure —Duseshrplib

To actually build perl, you must add the current working directory to your LD_LIBRARY_PATH
environment variable before running make. You can do this with

LD_LIBRARY_PATH='pwd":$LD_LIBRARY_PATH; export LD_LIBRARY_PATH
for Bourne—-style shells, or
setenv LD_LIBRARY_PATH ‘pwd’

for Csh-style shells. You *MUST* do this before running make. Folks running NeXT OPENSTEP must
substitute DYLD_LIBRARY_PATH for LD_LIBRARY_PATH above.

There is also an potential problem with the shared perl library if you want to have more than one "flavor" of
the same version of perl (e.g. with and without —-DDEBUGGING). For example, suppose you build and
install a standard Perl 5.004 with a shared library. Then, suppose you try to build Perl 5.004 with
—-DDEBUGGING enabled, but everything else the same, including all the installation directories. How can
you ensure that your newly built perl will link with your newly built libperl.so.4 rather with the installed
libperl.so.4? The answer is that you might not be able to. The installation directory is encoded in the perl
binary with the LD_RUN_PATH environment variable (or equivalent [d command-line option). On Solaris,
you can override that with LD_LIBRARY_PATH; on Linux you can‘t. On Digital Unix, you can override
LD_LIBRARY_PATH by setting the _RLD_ROOT environment variable to point to the perl build directory.

The only reliable answer is that you should specify a different directory for the architecture—dependent
library for your -DDEBUGGING version of perl. You can do this by changing all the *archlib* variables in
config.sh, namely archlib, archlib_exp, and installarchlib, to point to your new architecture-dependent
library.

Malloc Issues
Perl relies heavily on malloc(3) to grow data structures as needed, so perl‘'s performance can be noticeably
affected by the performance of the malloc function on your system.

The perl source is shipped with a version of malloc that is very fast but somewhat wasteful of space. On the
other hand, your system‘s malloc function may be a bit slower but also a bit more frugal. However, as of

18-0Oct-1998 Version 5.005_02 11

INSTALL Perl Programmers Reference Guide INSTALL

5.004_68, perl's malloc has been optimized for the typical requests from perl, so there's a chance that it may
be both faster and use less memory.

For many uses, speed is probably the most important consideration, so the default behavior (for most
systems) is to use the malloc supplied with perl. However, if you will be running very large applications
(e.g. Tk or PDL) or if your system already has an excellent malloc, or if you are experiencing difficulties
with extensions that use third—party libraries that call malloc, then you might wish to use your system's
malloc. (Or, you might wish to explore the malloc flags discussed below.)

To build without perl‘s malloc, you can use the Configure command
sh Configure —Uusemymalloc

or you can answer ‘n’ at the appropriate interactive Configure prompt.

Malloc Performance Flags

If you are using Perl's malloc, you may add one or more of the following items to your ccflags config.sh
variable to change its behavior. You can find out more about these and other flags by reading the
commentary near the top of the malloc.c source. The defaults should be fine for nearly everyone.
-DNO_FANCY_MALLOC

Undefined by default. Defining it returns malloc to the version used in Perl 5.004.

—DPLAIN_MALLOC

Undefined by default. Defining it in addition to NO_FANCY_MALLOC returns malloc to the version
used in Perl version 5.000.

Building a debugging perl

You can run perl scripts under the perl debugger at any timepeith-d your_script. If, however, you
want to debug perl itself, you probably want to do

sh Configure —Doptimize="-g’

This will do two independent things: First, it will force compilation to use cc —g so that you can use your
system’s debugger on the executable. (Note: Your system may actually require something like cc —g2.
Check your man pages for cc(l) and also any hint file for your system.) Second, it will add
-DDEBUGGING to your ccflags variable in config.sh so that you carpade-D to access perl's internal

state. (Note: Configure will only add —-DDEBUGGING by default if you are not reusing your old config.sh.

If you want to reuse your old config.sh, then you can just edit it and change the optimize and ccflags
variables by hand and then propagate your changes as shd®rojragating your changes to config.sh”
below.)

You can actually specify —g and -DDEBUGGING independently, but usually it's convenient to have both.

If you are using a shared libperl, see the warnings about multiple versions of perl under
Building a shared libperl.so Perl library

Other Compiler Flags

For most users, all of the Configure defaults are fine. However, you can change a number of factors in the
way perl is built by adding appropriate —D directives to your ccflags variable in config.sh.

For example, you can replace ttamd() andsrand() functions in the perl source by any other random
number generator by a trick such as the following (this should all be on one line):

sh Configure —Dccflags="-Dmy_rand=random —-Dmy_srand=srandom’ \
—-Drandbits=31

or you can use the drand48 family of functions with

sh Configure —Dccflags="-Dmy_rand=Irand48 —-Dmy_srand=srand48’ \
—-Drandbits=31

12

Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

or by adding the -D flags to your ccflags at the appropriate Configure prompt. (Read pp.c to see how this
works.)

You should also run Configure interactively to verify that a hint file doesn‘t inadvertently override your
ccflags setting. (Hints files shouldn't do that, but some might.)

What if it doesn‘t work?

Running Configure Interactively

If Configure runs into trouble, remember that you can always run Configure interactively so that you
can check (and correct) its guesses.

All the installation questions have been moved to the top, so you don‘t have to wait for them. Once
you'‘ve handled them (and your C compiler and flags) you can & at the next Configure prompt
and Configure will use the defaults from then on.

If you find yourself trying obscure command line incantations and config.over tricks, | recommend you
run Configure interactively instead. You'll probably save yourself time in the long run.

Hint files

The perl distribution includes a number of system-specific hints files in the hints/ directory. If one of
them matches your system, Configure will offer to use that hint file.

Several of the hint files contain additional important information. If you have any problems, it is a
good idea to read the relevant hint file for further information. See hints/solaris_2.sh for an extensive
example. More information about writing good hints is in the hints/README.hints file.

o* WHOA THERE!!! ***

Occasionally, Configure makes a wrong guess. For example, on SunOS 4.1.3, Configure incorrectly
concludes that tzname][] is in the standard C library. The hint file is set up to correct for this. You will
see a message:

*** \WWHOA THERE!! ***
The recommended value for $d_tzname on this machine was "undef"!
Keep the recommended value? [y]

You should always keep the recommended value unless, after reading the relevant section of the hint
file, you are sure you want to try overriding it.

If you are re-using an old config.sh, the word "previous" will be used instead of "recommended".
Again, you will almost always want to keep the previous value, unless you have changed something on
your system.

For example, suppose you have added libgdbm.a to your system and you decide to reconfigure perl to
use GDBM_File. When you run Configure again, you will need to add —lgdbm to the list of libraries.
Now, Configure will find your gdbm include file and library and will issue a message:

** WHOA THERE!! ***
The previous value for $i_gdbm on this machine was "undef"!
Keep the previous value? [y]

In this case, you do not want to keep the previous value, so you should answer ‘n’. (You'll also have
to manually add GDBM_File to the list of dynamic extensions to build.)

Changing Compilers
If you change compilers or make other significant changes, you should probably not re-use your old
config.sh. Simply remove it or rename it, e.g. mv config.sh config.sh.old. Then rerun Configure with
the options you want to use.

This is a common source of problems. If you change from cc to gcc, you should almost always
remove your old config.sh.

18-0Oct-1998 Version 5.005_02 13

INSTALL Perl Programmers Reference Guide INSTALL

Propagating your changes to config.sh
If you make any changes to config.sh, you should propagate them to all the .SH files by running

sh Configure —=S
You will then have to rebuild by running

make depend
make

config.over
You can also supply a shell script config.over to over-ride Configure's guesses. It will get loaded up
at the very end, just before config.sh is created. You have to be careful with this, however, as
Configure does no checking that your changes make sense. See the section on
"Changing the installation directoryfor an example.

config.h

Many of the system dependencies are contained in config.h. Configure builds config.h by running the
config_h.SH script. The values for the variables are taken from config.sh.

If there are any problems, you can edit config.h directly. Beware, though, that the next time you run
Configure, your changes will be lost.

cflags
If you have any additional changes to make to the C compiler command line, they can be made in
cflags.SH. For instance, to turn off the optimizer on toke.c, find the line in the switch structure for
toke.c and put the command optimize='—g’ before the ;; . You can also edit cflags directly, but beware
that your changes will be lost the next time you run Configure.

To explore various ways of changing ccflags from within a hint file, see the file hints’fREADME.hints.

To change the C flags for all the files, edit config.sh and change $ibflags or $optimize,
and then re—run

sh Configure —-S
make depend

No sh
If you don‘t have sh, you'll have to copy the sample file Porting/config_H to config.h and edit the
config.h to reflect your system's peculiarities. You'll probably also have to extensively modify the
extension building mechanism.

Porting information
Specific information for the OS/2, Plan9, VMS and Win32 ports is in the corresponding README
files and subdirectories. Additional information, including a glossary of all those config.sh variables,
is in the Porting subdirectory.

Ports for other systems may also be available. You should check out http://www.perl.com/CPAN/ports
for current information on ports to various other operating systems.

make depend

This will look for all the includes. The output is stored in makefile. The only difference between Makefile
and makefile is the dependencies at the bottom of makefile. If you have to make any changes, you should
edit makefile, not Makefile since the Unix make command reads makefile first. (On non-Unix systems, the
output may be stored in a different file. Check the valu&fo$tmakefile in your config.sh if in

doubt.)

Configure will offer to do this step for you, so it isn‘t listed explicitly above.

14 Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

make

This will attempt to make perl in the current directory.

If you can‘t compile successfully, try some of the following ideas. If none of them help, and careful reading

of the error message and the relevant manual pages on your system doesn'‘t help, you can send a message to
either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description of your
problem. Se&Reporting Problemsbelow.

hints
If you used a hint file, try reading the comments in the hint file for further tips and information.
extensions
If you can successfully build miniperl, but the process crashes during the building of extensions, you
should run

make minitest
to test your version of miniperl.

locale

If you have any locale-related environment variables set, try unsetting them. | have some reports that
some versions of IRIX hang while runnitigniniperl configpm with locales other than the C locale.

See the discussion unde&nake test'below about locales and the whdlecale problems'section in

the file pod/perllocale.pod. The latter is especially useful if you see something like this

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
LC_ALL ="En_US",
LANG = (unset)
are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

at Perl startup.

malloc duplicates

If you get duplicates upon linking for malloc et al, add ~-DEMBEDMYMALLOC to your ccflags
variable in config.sh.

varargs

If you get varargs problems with gcc, be sure that gcc is installed correctly and that you are not passing
—l/usr/include to gcc. When using gcc, you should probably have i_stdarg="define’ and
i_varargs=‘undef’ in config.sh. The problem is usually solved by running fixincludes correctly. If you
do change config.sh, don'‘t forget to propagate your changes (see

"Propagating your changes to config.dbélow). See also tHesprintf" item below.

util.c
If you get error messages such as the following (the exact line numbers and function name may vary in
different versions of perl):

util.c: In function ‘Perl_form’:
util.c:1107: number of arguments doesn’t match prototype
proto.h:125: prototype declaration

it might well be a symptom of the gcc "varargs problem”. See the préviasgs" item.

Solaris and SunOS dynamic loading

If you have problems with dynamic loading using gcc on SunOS or Solaris, and you are using GNU as
and GNU Id, you may need to add —B/bin/ (for SunOS) or —B/usr/ccs/bin/ (for Solaris) to your
$ccflags, $ldflags, and $lddiflags so that the system's versions of as and Id are used.

18-0Oct-1998 Version 5.005_02 15

INSTALL Perl Programmers Reference Guide INSTALL

Note that the trailing ‘/ is required. Alternatively, you can use the GCC_EXEC_PREFIX environment
variable to ensure that Sun‘s as and Id are used. Consult your gcc documentation for further
information on the —B option and the GCC_EXEC_PREFIX variable.

One convenient way to ensure you are not using GNU as and Id is to invoke Configure with
sh Configure —Dcc='gcc —B/usr/ccs/bin/’
for Solaris systems. For a SunOS system, you must use —B/bin/ instead.

Alternatively, recent versions of GNU Id reportedly work if you inclatfgl,—export—dynamic
in the ccdlflags variable in config.sh.

Id.so.1: ./perl: fatal: relocation error:

If you get this message on SunOS or Solaris, and you're using gcc, it's probably the GNU as or GNU
Id problem in the previous iteh$olaris and SunOS dynamic loading”

LD_LIBRARY_PATH
If you run into dynamic loading problems, check your setting of the LD_LIBRARY_PATH
environment variable. If you're creating a static Perl library (libperl.a rather than libperl.so) it should
build fine with LD_LIBRARY_PATH unset, though that may depend on details of your local set-up.

dlopen: stub interception failed

The primary cause of the ‘dlopen: stub interception failed’ message is that the LD_LIBRARY_PATH
environment variable includes a directory which is a symlink to /usr/lib (such as /lib).

The reason this causes a problem is quite subtle. The file libdl.so.1.0 actually *only* contains
functions which generate ‘stub interception failed’ errors! The runtime linker intercepts links to
"fusr/lib/libdl.s0.1.0" and links in internal implementation of those functions instead. [Thanks to Tim
Bunce for this explanation.]

nm extraction

If Configure seems to be having trouble finding library functions, try not using nm extraction. You
can do this from the command line with

sh Configure —Uusenm

or by answering the nm extraction question interactively. If you have previously run Configure, you
should not reuse your old config.sh.

umask not found
If the build processes encounters errors relatingmask() , the problem is probably that Configure
couldn‘t find yourumask() system call. Check your config.sh. You should have d_umask="define’.
If you don't, this is probably ththm extraction"problem discussed above. Also, try reading the hints
file for your system for further information.

vsprintf
If you run into problems with vsprintf in compiling util.c, the problem is probably that Configure failed
to detect your system's version e$printf() . Check whether your system hgsrintf()

(Virtually all modern Unix systems do.) Then, check the variable d_vprintf in config.sh. If your
system has vprintf, it should be:

d_vprintf="define’
If Configure guessed wrong, it is likely that Configure guessed wrong on a number of other common
functions too. This is probably tliem extraction"problem discussed above.
do_aspawn
If you run into problems relating to do_aspawn or do_spawn, the problem is probably that Configure

failed to detect your systemferk() function. Follow the procedure in the previous item on
"nm extraction

16 Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

__inet_*errors
If you receive unresolved symbol errors during Perl build and/or test referring to __inet_* symbols,
check to see whether BIND 8.1 is installed. It installs a /usr/local/include/arpa/inet.h that refers to
these symbols. Versions of BIND later than 8.1 do not install inet.h in that location and avoid the
errors. You should probably update to a newer version of BIND. If you can‘t, you can either link with
the updated resolver library provided with BIND 8.1 or rename /usr/local/bin/arpa/inet.h during the
Perl build and test process to avoid the problem.

Optimizer
If you can‘t compile successfully, try turning off your compiler‘s optimizer. Edit config.sh and change
the line
optimize="-0O’
to

optimize=""
then propagate your changes wsthConfigure —Sand rebuild withmake depend; make

CRIPPLED_CC
If you still can't compile successfully, try adding a —-DCRIPPLED_CC flag. (Just because you get no
errors doesn't mean it compiled right!) This simplifies some complicated expressions for compilers
that get indigestion easily.

Missing functions
If you have missing routines, you probably need to add some library or other, or you need to undefine
some feature that Configure thought was there but is defective or incomplete. Look through config.h
for likely suspects. If Configure guessed wrong on a number of functions, you might have the
"nm extraction"problem discussed above.

toke.c
Some compilers will not compile or optimize the larger files (such as toke.c) without some extra
switches to use larger jump offsets or allocate larger internal tables. You can customize the switches
for each file in cflags. It's okay to insert rules for specific files into makefile since a default rule only
takes effect in the absence of a specific rule.

Missing dbmclose
SCO prior to 3.2.4 may be missimlpmclose() . An upgrade to 3.2.4 that includes libdbm.nfs
(which includesdibmclose()) may be available.

Note (probably harmless): No library found for —Isomething
If you see such a message during the building of an extension, but the extension passes its tests anyway
(see"make test"below), then don‘t worry about the warning message. The extension Makefile.PL
goes looking for various libraries needed on various systems; few systems will need all the possible
libraries listed. For example, a system may have —Icposix or —lposix, but it's unlikely to have both, so
most users will see warnings for the one they don't have. The phrase ‘probably harmless’ is intended
to reassure you that nothing unusual is happening, and the build process is continuing.

On the other hand, if you are building GDBM_File and you get the message
Note (probably harmless): No library found for —lgdbm

then it's likely you‘re going to run into trouble somewhere along the line, since it's hard to see how
you can use the GDBM_File extension without the —Igdbm library.

It is true that, in principle, Configure could have figured all of this out, but Configure and the extension
building process are not quite that tightly coordinated.

18-0Oct-1998 Version 5.005_02 17

INSTALL Perl Programmers Reference Guide INSTALL

sh: ar: not found
This is a message from your shell telling you that the command ‘ar’ was not found. You need to check
your PATH environment variable to make sure that it includes the directory with the ‘ar’ command.
This is a common problem on Solaris, where ‘ar’ is in the /usr/ccs/bin directory.

db-recno failure on tests 51, 53 and 55
Old versions of the DB library (including the DB library which comes with FreeBSD 2.1) had broken
handling of recno databases with modified bval settings. Upgrade your DB library or OS.

Bad arg length for semctl, is XX, should be 272z

If you get this error message from the lib/ipc_sysv test, your System V IPC may be broken. The XX
typically is 20, and that is what ZZZ also should be. Consider upgrading your OS, or reconfiguring
your OS to include the System V semaphores.

lib/ipc_sysv........ semget: No space left on device

Either your account or the whole system has run out of semaphores. Or both. Either list the
semaphores with "ipcs" and remove the unneeded ones (which ones these are depends on your system
and applications) with "ipcrm —s SEMAPHORE_ID_HERE" or configure more semaphores to your
system.

Miscellaneous
Some additional things that have been reported for either perl4 or perl5:

Genix may need to use libc rather than libc_s, or #undef VARARGS.
NCR Tower 32 (OS 2.01.01) may need —W2,-SI,2000 and #undef MKDIR.
UTS may need one or more of —-DCRIPPLED_CC, -K or —g, and undef LSTAT.

FreeBSD can fail the lib/ipc_sysv.t test if SysV IPC has not been configured to the kernel. Perl tries to
detect this, though, and you will get a message telling what to do.

If you get syntax errors on ‘(*, try -DCRIPPLED_CC.

Machines with half-implemented dbm routines will need to #undef |_ODBM

make test

This will run the regression tests on the perl you just made (you should run plain ‘make’ before ‘make test’
otherwise you won'‘t have a complete build). If ‘make test’ doesn‘t say "All tests successful" then something
went wrong. See the file t/README in the t subdirectory.

Note that you can‘t run the tests in background if this disables opening of /dev/tty. You can use ‘make
test—notty’ in that case but a few tty tests will be skipped.

What if make test doesn‘t work?

If make test bombs out, just cd to the t directory and run ./TEST by hand to see if it makes any difference. If
individual tests bomb, you can run them by hand, e.g.,

Iperl op/groups.t

Another way to get more detailed information about failed tests and individual subtests is to cd to the t
directory and run

Jperl harness
(this assumes that most basic tests succeed, since harness uses complicated constructs).
You should also read the individual tests to see if there are any helpful comments that apply to your system.

locale

Note: One possible reason for errors is that some external programs may be broken due to the
combination of your environment and the wamake test exercises them. For example, this may

18

Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

happen if you have one or more of these environment variables set: LC_ALL LC_CTYPE
LC_COLLATE LANG. In some versions of UNIX, the non-English locales are known to cause
programs to exhibit mysterious errors.

If you have any of the above environment variables set, please try
setenv LC_ALL C

(for C shell) or
LC_ALL=C;export LC_ALL

for Bourne or Korn shell) from the command line and then retry make test. If the tests then succeed,
you may have a broken program that is confusing the testing. Please run the troublesome test by hand
as shown above and see whether you can locate the program. Look for things like: exec, ‘backquoted
command’, system, open("|...") or open("...]"). All these mean that Perl is trying to run some external
program.

Out of memory

On some systems, particularly those with smaller amounts of RAM, some of the tests in t/op/pat.t may
fail with an "Out of memory" message. Specifically, in perl5.004_64, tests 74 and 78 have been
reported to fail on some systems. On my SparcStation IPC with 8 MB of RAM, test 78 will fail if the
system is running any other significant tasks at the same time.

Try stopping other jobs on the system and then running the test by itself:
cd t; ./perl op/pat.t

to see if you have any better luck. If your perl still fails this test, it does not necessarily mean you have
a broken perl. This test tries to exercise the regular expression subsystem quite thoroughly, and may
well be far more demanding than your normal usage.
make install
This will put perl into the public directory you specified to Configure; by default this is /usr/local/bin. It will
also try to put the man pages in a reasonable place. It will not nroff the man pages, however. You may need
to be root to rumake install. If you are not root, you must own the directories in question and you should
ignore any messages about chown not working.
Installing perl under different names
If you want to install perl under a name other than "perl" (for example, when installing perl with special
features enabled, such as debugging), indicate the alternate name on the "make install" line, such as:
make install PERLNAME=myperl

Installed files
If you want to see exactly what will happen without installing anything, you can run

Jperl installperl —n
Jperl installman —n

make install will install the following:

perl,
perl5.nnn where nnn is the current release number. This
will be a link to perl.

suidperl,
sperl5.nnn If you requested setuid emulation.
azp awk-to—perl translator
cppstdin This is used by perl —P, if your cc —E can’t

read from stdin.
c2ph, pstruct Scripts for handling C structures in header files.
s2p sed-to—perl translator

18-0Oct-1998 Version 5.005_02 19

INSTALL Perl Programmers Reference Guide INSTALL

find2perl find—to—perl translator

h2ph Extract constants and simple macros from C headers
h2xs Converts C .h header files to Perl extensions.
perlbug Tool to report bugs in Perl.

perldoc Tool to read perl's pod documentation.

pl2pm Convert Perl 4 .pl files to Perl 5 .pm modules
pod2html, Converters from perl’s pod documentation format

pod2latex, to other useful formats.

pod2man, and

pod2text

splain Describe Perl warnings and errors

library files in $privlib and $archlib specified to
Configure, usually under /usr/local/lib/perl5/.

man pages in the location specified to Configure, usually
something like /usr/local/man/man1.

module in the location specified to Configure, usually

man pages under /ust/local/lib/perl5/man/man3.

pod/*.pod in $privlib/pod/.

Installperl will also create the library directorigsiteperl and$sitearch listed in config.sh. Usually,
these are something like

/usr/local/lib/perl5/site_perl/5.005
/usr/local/lib/perl5/site_perl/5.005/archname

where archname is something like sun4-sunos. These directories will be used for installing extensions.

Perl's *.h header files and the libperl.a library are also installed Wadtehlib so that any user may later
build new extensions, run the optional Perl compiler, or embed the perl interpreter into another program even
if the Perl source is no longer available.

Coexistence with earlier versions of perl5

WARNING: The upgrade from 5.004_0x to 5.005 is going to be a bit tricky. See
"Upgrading from 5.004 to 5.005below.

In general, you can usually safely upgrade from one version of Perl (e.g. 5.004_04) to another similar version
(e.g. 5.004_05) without re—compiling all of your add-on extensions. You can also safely leave the old
version around in case the new version causes you problems for some reason. For example, if you want to be
sure that your script continues to run with 5.004_04, simply replace the ‘#!/usr/local/bin/perl’ line at the top

of the script with the particular version you want to run, e.g. #!/usr/local/bin/perl5.00404.

Most extensions will probably not need to be recompiled to use with a newer version of perl. Here is how it
is supposed to work. (These examples assume you accept all the Configure defaults.)

The directories searched by version 5.005 will be

Configure variable Default value

$archlib lusr/local/lib/perl5/5.005/archname
$privlib {usr/local/lib/perl5/5.005
$sitearch lusr/local/lib/perl5/site_perl/5.005/archname
$sitelib lusr/local/lib/perl5/site_perl/5.005

while the directories searched by version 5.005_01 will be
$archlib lusr/local/lib/perl5/5.00501/archname
$privlib {usr/local/lib/perl5/5.00501
$sitearch lusr/local/lib/perl5/site_perl/5.005/archname
$sitelib lusr/local/lib/perl5/site_perl/5.005

20 Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

When you install an add-on extension, it gets installed $sielib (or $sitearch if it is
architecture—specific). This directory deliberately does NOT include the sub-version number (01) so that
both 5.005 and 5.005 01 can use the extension. Only when a perl version changes to break backwards
compatibility will the default suggestions for ti&sitearch and $sitelib version numbers be
increased.

However, if you do run into problems, and you want to continue to use the old version of perl along with
your extension, move those extension files to the appropriate version directory, shumtiviis (or

$archlib). (The extension's .packlist file lists the files installed with that extension. For the Tk
extension, for example, the list of files installed isbsitearch/auto/Tk/.packlist.) Then use
your newer version of perl to rebuild and re-install the extension$sitelib. This way, Perl 5.005

will find your files in the 5.005 directory, and newer versions of perl will find your newer extension in the
$sitelib directory. (This is also why perl searches the site—specific libraries last.)

Alternatively, if you are willing to reinstall all your extensions every time you upgrade perl, then you can
include the subversion number$sitearch and$sitelib when you run Configure.

Maintaining completely separate versions

Many users prefer to keep all versions of perl in completely separate directories. One convenient way to do
this is by using a separate prefix for each version, such as

sh Configure —Dprefix=/opt/perl5.004

and adding /opt/perl5.004/bin to the shell PATH variable. Such users may also wish to add a symbolic link
/usr/local/bin/perl so that scripts can still start with #!/usr/local/bin/perl.

Others might share a common directory for maintenance sub-versions (e.g. 5.004 for all 5.004_0x versions),
but change directory with each major version.

If you are installing a development subversion, you probably ought to seriously consider using a separate
directory, since development subversions may not have all the compatibility wrinkles ironed out yet.

Upgrading from 5.004 to 5.005

Extensions built and installed with versions of perl prior to 5.004_50 will need to be recompiled to be used
with 5.004_50 and later. You will, however, be able to continue using 5.004 even after you install 5.005.
The 5.004 binary will still be able to find the extensions built under 5.004; the 5.005 binary will look in the
new$sitearch and$sitelib directories, and will not find them.

Coexistence with perl4
You can safely install perl5 even if you want to keep perl4 around.

By default, the perl5 libraries go into /usr/local/lib/perl5/, so they don‘t override the perl4 libraries in
/usr/local/lib/perl/.

In your /usr/local/bin directory, you should have a binary named perl4.036. That will not be touched by the
perl5 installation process. Most perl4 scripts should run just fine under perl5. However, if you have any
scripts that require perl4, you can replace the #! line at the top of them by #!/usr/local/bin/perl4.036 (or
whatever the appropriate pathname is). See pod/perltrap.pod for possible problems running perl4 scripts
under perl5.

cd /usr/include; h2ph *.h sys/*.h

Some perl scripts need to be able to obtain information from the system header files. This command will
convert the most commonly used header files in /usr/include into files that can be easily interpreted by perl.
These files will be placed in the architecture—dependent libf&axciflib) directory you specified to
Configure.

Note: Due to differences in the C and perl languages, the conversion of the header files is not perfect. You
will probably have to hand-edit some of the converted files to get them to parse correctly. For example,
h2ph breaks spectacularly on type casting and certain structures.

18-0Oct-1998 Version 5.005_02 21

INSTALL Perl Programmers Reference Guide INSTALL

installhtml —help

Some sites may wish to make perl documentation available in HTML format. The installhtml utility can be
used to convert pod documentation into linked HTML files and install them.

The following command-line is an example of one used to convert perl documentation:

Jinstallhtml \
——podroot=. \
——podpath=lib:ext:pod:vms \
—-recurse \

——htmldir=/perl/nmanual \
——htmlroot=/perl/nmanual \
——splithead=pod/perlipc \
——splititem=pod/perlfunc \
——libpods=perlfunc:perlguts:perlvar:perirun:perlop \
—-verbose

See the documentation in installntml for more details. It can take many minutes to execute a large
installation and you should expect to see warnings like "no title", "unexpected directive" and "cannot
resolve" as the files are processed. We are aware of these problems (and would welcome patches for them).

You may find it helpful to run installhtml twice. That should reduce the number of "cannot resolve"
warnings.

cd pod &&make tex && (process the latex files)

Some sites may also wish to make the documentation in the pod/ directory available in TeX format. Type

(cd pod && make tex && <process the latex files>)

Reporting Problems

If you have difficulty building perl, and none of the advice in this file helps, and careful reading of the error
message and the relevant manual pages on your system doesn'‘t help either, then you should send a message
to either the comp.lang.perl.misc newsgroup or to perlbug@perl.com with an accurate description of your
problem.

Please include the output of the ./myconfig shell script that comes with the distribution. Alternatively, you
can use the perlbug program that comes with the perl distribution, but you need to have perl compiled before
you can use it. (If you have not installed it yet, you need to./perl —llib utils/perlbug

instead of a plaiperlbug .)

You might also find helpful information in the Porting directory of the perl distribution.

DOCUMENTATION

Read the manual entries before running perl. The main documentation is in the pod/ subdirectory and should
have been installed during the build process. Tyaa perl to get started. Alternatively, you can type
perldoc perl to use the supplied perldoc script. This is sometimes useful for finding things in the library
modules.

Under UNIX, you can produce a documentation book in postscript form, along with its table of contents, by
going to the pod/ subdirectory and running (either):

Jroffitall —groff # If you have GNU groff installed
Jroffitall —psroff # If you have psroff

This will leave you with two postscript files ready to be printed. (You may need to fix the roffitall command
to use your local troff set-up.)

Note that you must have performed the installation already before running the above, since the script collects
the installed files to generate the documentation.

22

Version 5.005_02 18-0Oct-1998

INSTALL Perl Programmers Reference Guide INSTALL

AUTHOR

Original author: Andy Dougherty doughera@Ilafayette.edu , borrowing very heavily from the original
README by Larry Wall, with lots of helpful feedback and additions from the perl5—porters@perl.org folks.

If you have problems, corrections, or questions, pleastRegmrting Problemsébove.
REDISTRIBUTION
This document is part of the Perl package and may be distributed under the same terms as perl itself.

If you are distributing a modified version of perl (perhaps as part of a larger package) please do modify these
installation instructions and the contact information to match your distribution.

LAST MODIFIED
$ld: INSTALL,v 1.42 1998/07/15 18:04:44 doughera Reledsed

18-0Oct-1998 Version 5.005_02 23

perlfaq Perl Programmers Reference Guide perlfaq

NAME
perlfag - frequently asked questions about Fibfe: 1998/08/05 12:09:38)

DESCRIPTION
This document is structured into the following sections:

perlfaq: Structural overview of the FAQ.
This document.

perlfaql: General Questions About Perl
Very general, high—level information about Perl.

perlfaq2: Obtaining and Learning about Perl
Where to find source and documentation to Perl, support, and related matters.

perlfaq3: Programming Tools
Programmer tools and programming support.

perlfaqg4: Data Manipulation
Manipulating numbers, dates, strings, arrays, hashes, and miscellaneous data issues.

perifag5: Files and Formats

I/0 and the "f" issues: filehandles, flushing, formats and footers.
perifaq6: Regexps

Pattern matching and regular expressions.

perlfaq7: General Perl Language Issues
General Perl language issues that don't clearly fit into any of the other sections.

perlfaq8: System Interaction
Interprocess communication (IPC), control over the user-interface (keyboard, screen and pointing
devices).

perlfaq9: Networking
Networking, the Internet, and a few on the web.

Where to get this document

This document is posted regularly to comp.lang.perl.announce and several other related newsgroups. It is
available in a variety of formats from CPAN in the /CPAN/doc/FAQs/FAQ/ directory, or on the web at
http://www.perl.com/perl/faq/ .

How to contribute to this document
You may mail corrections, additions, and suggestions to perlfag—suggestions@perl.com . This alias should
not be used taskFAQs. It's for fixing the current FAQ.

What will happen if you mail your Perl programming problems to the authors
Your questions will probably go unread, unless they‘re suggestions of new questions to add to the FAQ, in
which case they should have gone to the perlfag—suggestions@perl.com instead.

You should have read section 2 of this faq. There you would have learned that comp.lang.perl.misc is the
appropriate place to go for free advice. If your question is really important and you require a prompt and
correct answer, you should hire a consultant.

Credits

When | first began the Perl FAQ in the late 80s, | never realized it would have grown to over a hundred
pages, nor that Perl would ever become so popular and widespread. This document could not have been
written without the tremendous help provided by Larry Wall and the rest of the Perl Porters.

24 Version 5.005_02 18-0Oct-1998

perlfaq Perl Programmers Reference Guide perlfaq

Author and Copyright Information
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

Bundled Distributions

When included as part of the Standard Version of Perl, or as part of its complete documentation whether
printed or otherwise, this work may be distributed only under the terms of Perl's Artistic License. Any
distribution of this file or derivatives thereotitsideof that package require that special arrangements be
made with copyright holder.

Irrespective of its distribution, all code examples in these files are hereby placed into the public domain.
You are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit.
A simple comment in the code giving credit would be courteous but is not required.

Disclaimer

This information is offered in good faith and in the hope that it may be of use, but is not guaranteed to be
correct, up to date, or suitable for any particular purpose whatsoever. The authors accept no liability in
respect of this information or its use.

Changes

22/June/98
Significant changes throughout in preparation for the 5.005 release.

24/April/97
Style and whitespace changes from Chip, new question on reading one character at a time from a
terminal using POSIX from Tom.

23/April/97

Added http://www.oasis.leo.org/perl/ tperlfaqg2 Style fix to perlfag3 Added floating point
precision, fixed complex number arithmetic, cross-references, caveat for Text::Wrap, alternative
answer for initial capitalizing, fixed incorrect regexp, added example of Tie::IxHagperiimg4
Added example of passing and storing filehandles, added commfgrtiagq5 Restored variable
suicide, and added mass commentingptrifaq7Z Added Net::Telnet, fixed backticks, added
reader/writer pair to telnet question, added FindBin, grouped module questions tog@idiag8
Expanded caveats for the simple URL extractor, gave LWP example, added CGI security question,
expanded on the mail address answereirifagQ
25/March/97
Added more info to the binary distribution sectionpeflfag2 Added Net::Telnet tperlfagé Fixed
typos inperlfag8 Added mail sending exampleperlfag9 Added Merlyn‘s columns tperlfag2
18/March/97

Added the DATE to the NAME section, indicating which sections have changed.
Mentioned SIGPIPE angkerlipcin the forking open answer perifag8
Fixed description of a regular expressioparlifag4

17/March/97 Version
Various typos fixed throughout.

Added new question on Perl BNF parlfaq?.

Initial Release: 11/March/97

This is the initial release of version 3 of the FAQ; consequently there have been no changes since its
initial release.

18-0Oct-1998 Version 5.005_02 25

perlfaql Perl Programmers Reference Guide perlfaql

NAME
perlfagl — General Questions About P&Révision: 1.15%, $Date: 1998/08/05 11:52:28)

DESCRIPTION
This section of the FAQ answers very general, high—level questions about Perl.

What is Perl?

Perl is a high—level programming language with an eclectic heritage written by Larry Wall and a cast of
thousands. It derives from the ubiquitous C programming language and to a lesser extent from sed, awk, the
Unix shell, and at least a dozen other tools and languages. Perl's process, file, and text manipulation facilities
make it particularly well-suited for tasks involving quick prototyping, system utilities, software tools,
system management tasks, database access, graphical programming, networking, and world wide web
programming. These strengths make it especially popular with system administrators and CGI script authors,
but mathematicians, geneticists, journalists, and even managers also use Perl. Maybe you should, too.

Who supports Perl? Who develops it? Why is it free?

The original culture of the pre—populist Internet and the deeply—held beliefs of Perl's author, Larry Wall,
gave rise to the free and open distribution policy of perl. Perl is supported by its users. The core, the
standard Perl library, the optional modules, and the documentation you‘re reading now were all written by
volunteers. See the personal note at the end of the README file in the perl source distribution for more
details. Segerlhist(new as of 5.005) for Perl‘'s milestone releases.

In particular, the core development team (known as the Perl Porters) are a rag—tag band of highly altruistic
individuals committed to producing better software for free than you could hope to purchase for money.
You may snhoop on pending developments via news://genetics.upenn.edu/perl.porters—gw/ and
http://www.frii.com/~gnat/perl/porters/summary.html.

While the GNU project includes Perl in its distributions, there's no such thing as "GNU Perl". Perl is not
produced nor maintained by the Free Software Foundation. Perl's licensing terms are also more open than
GNU software's tend to be.

You can get commercial support of Perl if you wish, although for most users the informal support will more
than suffice. See the answer to "Where can | buy a commercial version of perl?" for more information.

Which version of Perl should | use?

You should definitely use version 5. Version 4 is old, limited, and no longer maintained; its last patch
(4.036) was in 1992. The most recent production release is 5.005_01. Further references to the Perl
language in this document refer to this production release unless otherwise specified. There may be one or
more official bug fixes for 5.005_01 by the time you read this, and also perhaps some experimental versions
on the way to the next release.

What are perl4 and perl5?

Perl4 and perl5 are informal names for different versions of the Perl programming language. It's easier to
say "perl5" than it is to say "the 5(.004) release of Perl", but some people have interpreted this to mean
there's a language called "perl5", which isn‘t the case. Perl5 is merely the popular name for the fifth major

release (October 1994), while perl4 was the fourth major release (March 1991). There was also a perll (in
January 1988), a perl2 (June 1988), and a perl3 (October 1989).

The 5.0 release is, essentially, a complete rewrite of the perl source code from the ground up. It has been
modularized, object-oriented, tweaked, trimmed, and optimized until it almost doesn‘t look like the old
code. However, the interface is mostly the same, and compatibility with previous releases is very high.

To avoid the "what language is perl5?" confusion, some people prefer to simply use "perl" to refer to the
latest version of perl and avoid using "perl5" altogether. It's not really that big a deal, though.

Seeperlhistfor a history of Perl revisions.

26 Version 5.005_02 18-0Oct-1998

perlfaql Perl Programmers Reference Guide perlfaql

How stable is Perl?

Production releases, which incorporate bug fixes and new functionality, are widely tested before release.
Since the 5.000 release, we have averaged only about one production release per year.

Larry and the Perl development team occasionally make changes to the internal core of the language, but all
possible efforts are made toward backward compatibility. While not quite all perl4 scripts run flawlessly
under perl5, an update to perl should nearly never invalidate a program written for an earlier version of perl
(barring accidental bug fixes and the rare new keyword).

Is Perl difficult to learn?

No, Perl is easy to start learning — and easy to keep learning. It looks like most programming languages
you're likely to have experience with, so if you‘ve ever written an C program, an awk script, a shell script, or
even BASIC program, you'‘re already part way there.

Most tasks only require a small subset of the Perl language. One of the guiding mottos for Perl development
is "there's more than one way to do it" (TMTOWTDI, sometimes pronounced "tim toady"). Perl's learning
curve is therefore shallow (easy to learn) and long (there's a whole lot you can do if you really want).

Finally, Perl is (frequently) an interpreted language. This means that you can write your programs and test
them without an intermediate compilation step, allowing you to experiment and test/debug quickly and
easily. This ease of experimentation flattens the learning curve even more.

Things that make Perl easier to learn: Unix experience, almost any kind of programming experience, an
understanding of regular expressions, and the ability to understand other people's code. If there's something
you need to do, then it's probably already been done, and a working example is usually available for free.
Don't forget the new perl modules, either. They‘re discussed in Part 3 of this FAQ, along with the CPAN,
which is discussed in Part 2.

How does Perl compare with other languages like Java, Python, REXX, Scheme, or Tcl?

Favorably in some areas, unfavorably in others. Precisely which areas are good and bad is often a personal
choice, so asking this question on Usenet runs a strong risk of starting an unproductive Holy War.

Probably the best thing to do is try to write equivalent code to do a set of tasks. These languages have their
own newsgroups in which you can learn about (but hopefully not argue about) them.

Can | do [task] in Perl?

Perl is flexible and extensible enough for you to use on almost any task, from one-line file—processing tasks
to complex systems. For many people, Perl serves as a great replacement for shell scripting. For others, it
serves as a convenient, high—level replacement for most of what they‘d program in low-level languages like
C or C++. It's ultimately up to you (and possibly your management ...) which tasks you'll use Perl for and
which you won't.

If you have a library that provides an API, you can make any component of it available as just another Perl
function or variable using a Perl extension written in C or C++ and dynamically linked into your main perl
interpreter. You can also go the other direction, and write your main program in C or C++, and then link in
some Perl code on the fly, to create a powerful application.

That said, there will always be small, focused, special-purpose languages dedicated to a specific problem
domain that are simply more convenient for certain kinds of problems. Perl tries to be all things to all
people, but nothing special to anyone. Examples of specialized languages that come to mind include prolog
and matlab.

When shouldn‘t | program in Perl?
When your manager forbids it — but do consider replacing them :-).
Actually, one good reason is when you already have an existing application written in another language

that's all done (and done well), or you have an application language specifically designed for a certain task
(e.g. prolog, make).

18-0Oct-1998 Version 5.005_02 27

perlfaql Perl Programmers Reference Guide perlfaql

For various reasons, Perl is probably not well-suited for real-time embedded systems, low-level operating
systems development work like device drivers or context—switching code, complex multithreaded
shared—memory applications, or extremely large applications. You'll notice that perl is not itself written in
Perl.

The new native—code compiler for Perl may reduce the limitations given in the previous statement to some
degree, but understand that Perl remains fundamentally a dynamically typed language, and not a statically
typed one. You certainly won't be chastized if you don't trust nuclear—plant or brain—surgery monitoring
code to it. And Larry will sleep easier, too — Wall Street programs not withstanding. :-)

What's the difference between "perl" and "Perl"?

One bit. Oh, you weren't talking ASCII? :-) Larry now uses "Perl" to signify the language proper and "perl"
the implementation of it, i.e. the current interpreter. Hence Tom'‘s quip that "Nothing but perl can parse
Perl." You may or may not choose to follow this usage. For example, parallelism means "awk and perl" and
"Python and Perl" look ok, while "awk and Perl" and "Python and perl" do not.

Is it a Perl program or a Perl script?

It doesn‘t matter.

In "standard terminology" programhas been compiled to physical machine code once, and can then be be
run multiple times, whereasszript must be translated by a program each time it's used. Perl programs,
however, are usually neither strictly compiled nor strictly interpreted. They can be compiled to a byte code
form (something of a Perl virtual machine) or to completely different languages, like C or assembly
language. You can't tell just by looking whether the source is destined for a pure interpreter, a parse-tree
interpreter, a byte code interpreter, or a native—code compiler, so it's hard to give a definitive answer here.

What is a JAPH?

These are the "just another perl hacker" signatures that some people sign their postings with. About 100 of
the of the earlier ones are available from http://www.perl.com/CPAN/misc/japh .

Where can | get a list of Larry Wall witticisms?

Over a hundred quips by Larry, from postings of his or source code, can be found at
http://www.perl.com/CPAN/misc/lwall-quotes .

How can | convince my sysadmin/supervisor/employees to use version (5/5.005/Perl instead of

some other language)?

If your manager or employees are wary of unsupported software, or software which doesn't officially ship
with your Operating System, you might try to appeal to their self-interest. If programmers can be more
productive using and utilizing Perl constructs, functionality, simplicity, and power, then the typical
manager/supervisor/employee may be persuaded. Regarding using Perl in general, it's also sometimes
helpful to point out that delivery times may be reduced using Perl, as compared to other languages.

If you have a project which has a bottleneck, especially in terms of translation or testing, Perl almost
certainly will provide a viable, and quick solution. In conjunction with any persuasion effort, you should not
fail to point out that Perl is used, quite extensively, and with extremely reliable and valuable results, at many
large computer software and/or hardware companies throughout the world. In fact, many Unix vendors now
ship Perl by default, and support is usually just a news—posting away, if you can‘t find the answer in the
comprehensivdocumentation, including this FAQ.

If you face reluctance to upgrading from an older version of perl, then point out that version 4 is utterly
unmaintained and unsupported by the Perl Development Team. Another big sell for Perl5 is the large
number of modules and extensions which greatly reduce development time for any given task. Also mention
that the difference between version 4 and version 5 of Perl is like the difference between awk and C++.
(Well, ok, maybe not quite that distinct, but you get the idea.) If you want support and a reasonable
guarantee that what you‘re developing will continue to work in the future, then you have to run the supported
version. That probably means running the 5.005 release, although 5.004 isn‘t that bad (it's just one year and
one release behind). Several important bugs were fixed from the 5.000 through 5.003 versions, though, so
try upgrading past them if possible.

28

Version 5.005_02 18-0Oct-1998

perlfaql Perl Programmers Reference Guide perlfaql

Of particular note is the massive bughunt for buffer overflow problems that went into the 5.004 release. All
releases prior to that, including perl4, are considered insecure and should be upgraded as soon as possible.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.
When included as an integrated part of the Standard Distribution of Perl or of its documentation (printed or

otherwise), this works is covered under Perl‘'s Artistic Licence. For separate distributions of all or part of
this FAQ outside of that, seerlfag

Irrespective of its distribution, all code examples here are public domain. You are permitted and encouraged
to use this code and any derivatives thereof in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit to the FAQ would be courteous but is not required.

18-0Oct-1998 Version 5.005_02 29

perlfaq2 Perl Programmers Reference Guide perlfaq2

NAME
perlfag2 — Obtaining and Learning about P8R¢vision: 1.25%, $Date: 1998/08/05 11:47:2%)

DESCRIPTION

This section of the FAQ answers questions about where to find source and documentation for Perl, support,
and related matters.

What machines support Perl? Where do | get it?

The standard release of Perl (the one maintained by the perl development team) is distributed only in source
code form. You can find this at http://www.perl.com/CPAN/src/latest.tar.gz, which in standard Internet
format (a gzipped archive in POSIX tar format).

Perl builds and runs on a bewildering number of platforms. Virtually all known and current Unix derivatives
are supported (Perl's native platform), as are proprietary systems like VMS, DOS, 0S/2, Windows, QNX,
BeOS, and the Amiga. There are also the beginnings of support for MPE/iX.

Binary distributions for some proprietary platforms, including Apple systems can be found
http://www.perl.com/CPAN/ports/ directory. Because these are not part of the standard distribution, they
may and in fact do differ from the base Perl port in a variety of ways. You'll have to check their respective
release notes to see just what the differences are. These differences can be either positive (e.g. extensions for
the features of the particular platform that are not supported in the source release of perl) or negative (e.g.
might be based upon a less current source release of perl).

A useful FAQ for Win32 Perl users is
http://www.endcontsw.com/people/evangelo/Perl_for_Win32_FAQ.html
How can | get a binary version of Perl?

If you don‘t have a C compiler because for whatever reasons your vendor did not include one with your
system, the best thing to do is grab a binary version of gcc from the net and use that to compile perl with.
CPAN only has binaries for systems that are terribly hard to get free compilers for, not for Unix systems.

Your first stop should be http://www.perl.com/CPAN/ports to see what information is already available. A
simple installation guide for MS-DOS is available at http://www.cs.ruu.nl/~piet/perl5dos.html , and
similarly for Windows 3.1 at http://www.cs.ruu.nl/~piet/perlwin3.html .

| don't have a C compiler on my system. How can | compile perl?
Since you don‘t have a C compiler, you're doomed and your vendor should be sacrificed to the Sun gods.
But that doesn‘t help you.

What you need to do is get a binary version of gcc for your system first. Consult the Usenet FAQs for your
operating system for information on where to get such a binary version.
| copied the Perl binary from one machine to another, but scripts don‘t work.

That's probably because you forgot libraries, or library paths differ. You really should build the whole
distribution on the machine it will eventually live on, and then typeke install . Most other
approaches are doomed to failure.

One simple way to check that things are in the right place is to print out the hard—coded @INC which perl is
looking for.

perl —e 'print join("\n",@INC)’
If this command lists any paths which don‘t exist on your system, then you may need to move the
appropriate libraries to these locations, or create symlinks, aliases, or shortcuts appropriately.
You might also want to check odbw do | keep my own module/library directory? in perlfaq8

| grabbed the sources and tried to compile but gdbm/dynamic loading/malloc/linking/... failed.
How do | make it work?

Read thdNSTALL file, which is part of the source distribution. It describes in detail how to cope with most

30 Version 5.005_02 18-0Oct-1998

perlfaq2 Perl Programmers Reference Guide perlfaq2

idiosyncracies that the Configure script can‘t work around for any given system or architecture.

What modules and extensions are available for Perl? What is CPAN? What does CPAN/src/...
mean?

CPAN stands for Comprehensive Perl Archive Network, a huge archive replicated on dozens of machines all
over the world. CPAN contains source code, non—native ports, documentation, scripts, and many
third—party modules and extensions, designed for everything from commercial database interfaces to
keyboard/screen control to web walking and CGI scripts. The master machine for CPAN is
ftp://ftp.funet.fi/pub/languages/perl/CPAN/, but you can use the address
http://www.perl.com/CPAN/CPAN.html to fetch a copy from a "site near you". See
http://www.perl.com/CPAN (without a slash at the end) for how this process works.

CPAN/path/... is a naming convention for files available on CPAN sites. CPAN indicates the base directory
of a CPAN mirror, and the rest of the path is the path from that directory to the file. For instance, if you're
using ftp://ftp.funet.fi/pub/languages/perl/CPAN as your CPAN site, the file CPAN/misc/japh file is
downloadable as ftp://ftp.funet.fi/pub/languages/perl/CPAN/misc/japh .

Considering that there are hundreds of existing modules in the archive, one probably exists to do nearly
anything you can think of. Current categories under CPAN/modules/by—category/ include perl core modules;
development support; operating system interfaces; networking, devices, and interprocess communication;
data type utilities; database interfaces; user interfaces; interfaces to other languages; filenames, file systems,
and file locking; internationalization and locale; world wide web support; server and daemon utilities;
archiving and compression; image manipulation; mail and news; control flow utilities; filehandle and I/O;
Microsoft Windows modules; and miscellaneous modules.

Is there an ISO or ANSI certified version of Perl?
Certainly not. Larry expects that he'll be certified before Perl is.

Where can | get information on Perl?

The complete Perl documentation is available with the perl distribution. If you have perl installed locally,
you probably have the documentation installed as well: type perl if you're on a system resembling
Unix. This will lead you to other important man pages, including how to sethpdANPATH. If you‘re not

on a Unix system, access to the documentation will be different; for example, it might be only in HTML
format. But all proper perl installations have fully—accessible documentation.

You might also tryperldoc perl in case your system doesn‘t have a proper man command, or it's been
misinstalled. If that doesn‘t work, try looking in /usr/local/lib/perl5/pod for documentation.

If all else fails, consult the CPAN/doc directory, which contains the complete documentation in various
formats, including native pod, troff, html, and plain text. There's also a web page at
http://www.perl.com/perl/info/documentation.html that might help.

Many good books have been written about Perl — see the section below for more details.

What are the Perl newsgroups on USENET? Where do | post questions?
The now defunct comp.lang.perl newsgroup has been superseded by the following groups:

comp.lang.perl.announce Moderated announcement group
comp.lang.perl.misc Very busy group about Perl in general
comp.lang.perl.moderated Moderated discussion group
comp.lang.perl.modules Use and development of Perl modules
comp.lang.perl.tk Using Tk (and X) from Perl

comp.infosystems.www.authoring.cgi Writing CGlI scripts for the Web.
Actually, the moderated group hasn‘t passed yet, but we'‘re keeping our fingers crossed.

There is also USENET gateway to the mailing list used by the crack Perl development team (perl5—porters)
at news://news.perl.com/perl.porters—gw/ .

18-0Oct-1998 Version 5.005_02 31

perlfaq2 Perl Programmers Reference Guide perlfaq2

Where should | post source code?

You should post source code to whichever group is most appropriate, but feel free to cross-post to
comp.lang.perl.misc. If you want to cross—post to alt.sources, please make sure it follows their posting
standards, including setting the Followup—To header line to NOT include alt.sources; see their FAQ for
details.

If you're just looking for software, first use Alta Vista, Deja News, and search CPAN. This is faster and
more productive than just posting a request.

Perl Books

A number of books on Perl and/or CGI programming are available. A few of these are good, some are ok,
but many aren‘t worth your money. Tom Christiansen maintains a list of these books, some with extensive
reviews, at http://www.perl.com/perl/critiques/index.html.

The incontestably definitive reference book on Perl, written by the creator of Perl, is now in its second
edition:

Programming Perl (the "Camel Book"):
Authors: Larry Wall, Tom Christiansen, and Randal Schwartz
ISBN 1-56592-149-6 (English)
ISBN 4-89052-384-7 (Japanese)
URL: http://www.oreilly.com/catalog/pperl2/
(French, German, Italian, and Hungarian translations also
available)

The companion volume to the Camel containing thousands of real-world examples, mini-tutorials, and
complete programs (first premiering at the 1998 Perl Conference), is:

The Perl Cookbook (the "Ram Book"):
Authors: Tom Christiansen and Nathan Torkington,
with Foreword by Larry Wall
ISBN: 1-56592-243-3
URL: http://perl.oreilly.com/cookbook/

If you're already a hard—core systems programmer, then the Camel Book might suffice for you to learn Perl
from. But if you‘re not, check out:

Learning Perl (the "Llama Book"):
Authors: Randal Schwartz and Tom Christiansen
with Foreword by Larry Wall
ISBN: 1-56592-284-0
URL: http://www.oreilly.com/catalog/Iperl2/

Despite the picture at the URL above, the second edition of "Llama Book" really has a blue cover, and is
updated for the 5.004 release of Perl. Various foreign language editions are available, inhaachiig
Perl on Win32 Systenfthe Gecko Book).

If you're not an accidental programmer, but a more serious and possibly even degreed computer scientist
who doesn‘t need as much hand-holding as we try to provide in the Llama or its defurred cousin the Gecko,
please check out the delightful bodlerl: The Programmer's Companipwritten by Nigel Chapman.

You can order O‘Reilly books directly from O‘Reill§ Associates, 1-800-998-9938. Local/overseas is
1-707-829-0515. If you can locate an O'Reilly order form, you can also fax to 1-707-829-0104. See
http://www.ora.com/ on the Web.

What follows is a list of the books that the FAQ authors found personally useful. Your mileage may (but, we
hope, probably won't) vary.

Recommended books on (or muchly on) Perl follow; those marked with a star may be ordered from
O'Reilly.

32

Version 5.005_02 18-0Oct-1998

perlfaq2 Perl Programmers Reference Guide perlfaq2

References

*Programming Perl
by Larry Wall, Tom Christiansen, and Randal L. Schwartz

*Perl 5 Desktop Reference
By Johan Vromans

Tutorials

*Learning Perl [2nd edition]
by Randal L. Schwartz and Tom Christiansen
with foreword by Larry Wall

*Learning Perl on Win32 Systems
by Randal L. Schwartz, Erik Olson, and Tom Christiansen,
with foreword by Larry Wall

Perl: The Programmer’'s Companion
by Nigel Chapman

Cross—Platform Perl
by Eric F. Johnson

MacPerl: Power and Ease
by Vicki Brown and Chris Nandor, foreword by Matthias Neeracher

Task—-Oriented

*The Perl Cookbook
by Tom Christiansen and Nathan Torkington
with foreword by Larry Wall

Perl5 Interactive Course [2nd edition]
by Jon Orwant

*Advanced Perl Programming
by Sriram Srinivasan

Effective Perl Programming
by Joseph Hall

Special Topics

*Mastering Regular Expressions
by Jeffrey Fried|

How to Set up and Maintain a World Wide Web Site [2nd edition]
by Lincoln Stein

Perl in Magazines

The first and only periodical devoted to All Things P&He Perl Journatontains tutorials, demonstrations,

case studies, announcements, contests, and much more. TPJ has columns on web development, databases,
Win32 Perl, graphical programming, regular expressions, and networking, and sponsors the Obfuscated Perl
Contest. It is published quarterly under the gentle hand of its editor, Jon Orwant. See http://www.tpj.com/

or send mail to subscriptions@tpj.com.

Beyond this, magazines that frequently carry high—quality articles on PeAVake Techniquegsee
http://www.webtechniques.comMerformance Computinthttp://www.performance—computing.com/), and
Usenix's newsletter/magazine to its membéygin:, at http://www.usenix.org/. Randal's Web Technique's
columns are available on the web at http://www.stonehenge.com/merlyn/WebTechniques/.

18-0Oct-1998 Version 5.005_02 33

perlfaq2 Perl Programmers Reference Guide perlfaq2

Perl on the Net: FTP and WWW Access

To get the best (and possibly cheapest) performance, pick a site from the list below and use it to grab the
complete list of mirror sites. From there you can find the quickest site for you. Remember, the following list
is notthe complete list of CPAN mirrors.

http://www.perl.com/CPAN (redirects to another mirror)
http://www.perl.org/CPAN
ftp://ftp.funet.fi/pub/languages/perl/CPAN/
http://www.cs.ruu.nl/pub/PERL/CPAN/
ftp://ftp.cs.colorado.edu/pub/perl/CPAN/

What mailing lists are there for perl?

Most of the major modules (tk, CGl, libwww-perl) have their own mailing lists. Consult the documentation
that came with the module for subscription information. The following are a list of mailing lists related to
perl itself.

If you subscribe to a mailing list, it behooves you to know how to unsubscribe from it. Strident pleas to the
list itself to get you off will not be favorably received.

MacPerl
There is a mailing list for discussing Macintosh Perl. Contact "mac—perl-request@iis.ee.ethz.ch".

Also see Matthias Neeracher's (the creator and maintainer of MacPerl) webpage at
http://www.iis.ee.ethz.ch/~neeri/macintosh/perl.html for many links to interesting MacPerl sites, and
the applications/MPW tools, precompiled.

Perl5—-Porters

The core development team have a mailing list for discussing fixes and changes to the language. Send
mail to "perl5-porters—-request@perl.org" with help in the body of the message for information on
subscribing.

NTPerl

This list is used to discuss issues involving Win32 Perl 5 (Windows NT and Win95). Subscribe by
mailing ListManager@ActiveWare.com with the message body:

subscribe Perl-Win32-Users

The list software, also written in perl, will automatically determine your address, and subscribe you
automatically. To unsubscribe, mail the following in the message body to the same address like so:

unsubscribe Perl-Win32-Users
You can also check http://www.activeware.com/ and select "Mailing Lists" to join or leave this list.

Perl-Packrats

Discussion related to archiving of perl materials, particularly the Comprehensive Perl Archive
Network (CPAN). Subscribe by emailing majordomo@cis.ufl.edu:

subscribe perl-packrats

The list software, also written in perl, will automatically determine your address, and subscribe you
automatically. To unsubscribe, simple prepend the same command with an "un", and mail to the same
address like so:

unsubscribe perl-packrats

Archives of comp.lang.perl.misc
Have you tried Deja News or Alta Vista?

ftp.cis.ufl.edu:/pub/perl/comp.lang.perl.*/monthly has an almost complete collection dating back to 12/89
(missing 08/91 through 12/93). They are kept as one large file for each month.

34 Version 5.005_02 18-0Oct-1998

perlfaq2 Perl Programmers Reference Guide perlfaq2

You'll probably want more a sophisticated query and retrieval mechanism than a file listing, preferably one
that allows you to retrieve articles using a fast—access indices, keyed on at least author, date, subject, thread
(as in "trn") and probably keywords. The best solution the FAQ authors know of is the MH pick command,
but it is very slow to select on 18000 articles.

If you have, or know where can be found, the missing sections, please let perlfag—suggestions@perl.com
know.

Where can | buy a commercial version of Perl?

In a sense, Perl alreatsycommercial software: It has a licence that you can grab and carefully read to your
manager. It is distributed in releases and comes in well-defined packages. There is a very large user
community and an extensive literature. The comp.lang.perl.* newsgroups and several of the mailing lists
provide free answers to your questions in near real-time. Perl has traditionally been supported by Larry,
dozens of software designers and developers, and thousands of programmers, all working for free to create a
useful thing to make life better for everyone.

However, these answers may not suffice for managers who require a purchase order from a company whom
they can sue should anything go wrong. Or maybe they need very serious hand-holding and contractual
obligations. Shrink-wrapped CDs with perl on them are available from several sources if that will help.

Or you can purchase a real support contract. Although Cygnus historically provided this service, they no
longer sell support contracts for Perl. Instead, the Paul Ingram Group will be taking up the slack through The
Perl Clinic. The following is a commercial from them:

"Do you need professional support for Perl and/or Oraperl? Do you need a support contract with defined
levels of service? Do you want to pay only for what you need?

"The Paul Ingram Group has provided quality software development and support services to some of the
world's largest corporations for ten years. We are now offering the same quality support services for Perl at
The Perl Clinic. This service is led by Tim Bunce, an active perl porter since 1994 and well known as the
author and maintainer of the DBI, DBD::Oracle, and Oraperl modules and author/co—maintainer of The Perl
5 Module List. We also offer Oracle users support for Perl5 Oraperl and related modules (which Oracle is
planning to ship as part of Oracle Web Server 3). 20% of the profit from our Perl support work will be
donated to The Perl Institute."

For more information, contact the The Perl Clinic:

Tel: +44 1483 424424

Fax: +44 1483 419419

Web: http://www.perl.co.uk/

Email: perl-support-info@perl.co.uk or Tim.Bunce@ig.co.uk

See also www.perl.com for updates on training and support.

Where do | send bug reports?

If you are reporting a bug in the perl interpreter or the modules shipped with perl, psdliigprogram in
the perl distribution or mail your report to perlbug@perl.com.

If you are posting a bug with a non-standard port (see the answer to "What platforms is Perl available for?"),
a binary distribution, or a non-standard module (such as Tk, CGl, etc), then please see the documentation
that came with it to determine the correct place to post bugs.

Read the perlbug(1l) man page (perl5.004 or later) for more information.

What is perl.com? perl.org? The Perl Institute?

The perl.com domain is managed by Tom Christiansen, who created it as a public service long before
perl.org came about. Despite the name, it's a pretty non—commercial site meant to be a clearinghouse for
information about all things Perlian, accepting no paid advertisements, bouncy happy gifs, or silly java
applets on its pages. The Perl Home Page at http://www.perl.com/ is currently hosted on a T3 line courtesy
of Songline Systems, a software—oriented subsidiary of O‘Reilly and Associates.

18-0Oct-1998 Version 5.005_02 35

perlfaq2 Perl Programmers Reference Guide perlfaq2

perl.org is the official vehicle for The Perl Institute. The motto of TPI is "helping people help Perl help
people" (or something like that). It's a non—profit organization supporting development, documentation, and
dissemination of perl.

How do | learn about object-oriented Perl programming?

perltoot (distributed with 5.004 or later) is a good place to start. Alsolobj, perlref, and perlmod are
useful references, whilgerlbothas some excellent tips and tricks.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.
When included as an integrated part of the Standard Distribution of Perl or of its documentation (printed or

otherwise), this works is covered under Perl‘'s Artistic Licence. For separate distributions of all or part of
this FAQ outside of that, seerlfag

Irrespective of its distribution, all code examples here are public domain. You are permitted and encouraged
to use this code and any derivatives thereof in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit to the FAQ would be courteous but is not required.

36 Version 5.005_02 18-0Oct-1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

NAME
perlfag3 — Programming Tool$Revision: 1.29%, $Date: 1998/08/05 11:57:08)

DESCRIPTION
This section of the FAQ answers questions related to programmer tools and programming support.

How do | do (anything)?

Have you looked at CPAN (seerlfaqd? The chances are that someone has already written a module that
can solve your problem. Have you read the appropriate man pages? Here's a brief index:

Basics perldata, perlvar, perlsyn, perlop, perlsub

Execution perlrun, perldebug

Functions perlfunc

Objects perlref, perimod, perlobj, perltie

Data Structures perlref, perllol, perldsc

Modules perlmod, perlmodlib, perlsub

Regexps perlre, perlfunc, perlop, perllocale

Moving to perl5 perltrap, perl

Linking w/C perixstut, perlxs, perlcall, perlguts, perlembed

Various http://www.perl.com/CPAN/doc/FMTEYEWTK/index.html

(not a man—page but still useful)
perltocprovides a crude table of contents for the perl man page set.

How can | use Perl interactively?
The typical approach uses the Perl debugger, described in the perldebug(1l) man page, on an “empty"
program, like this:
perl —de 42

Now just type in any legal Perl code, and it will be immediately evaluated. You can also examine the
symbol table, get stack backtraces, check variable values, set breakpoints, and other operations typically
found in symbolic debuggers.

Is there a Perl shell?

In general, no. The Shell.pm module (distributed with perl) makes perl try commands which aren‘t part of
the Perl language as shell commands. perlsh from the source distribution is simplistic and uninteresting, but
may still be what you want.

How do | debug my Perl programs?
Have you usedw? It enables warnings for dubious practices.
Have you trieduse strict ? It prevents you from using symbolic references, makes you predeclare any

subroutines that you call as bare words, and (probably most importantly) forces you to predeclare your
variables withmy or use vars

Did you check the returns of each and every system call? The operating system (and thus Perl) tells you
whether they worked or not, and if not why.

open(FH, "> /etc/cantwrite")
or die "Couldn’t write to /etc/cantwrite: $!\n";

Did you readperltrap? It's full of gotchas for old and new Perl programmers, and even has sections for
those of you who are upgrading from languagesdikkandC.

Have you tried the Perl debugger, describepleiridebu@ You can step through your program and see what
it's doing and thus work out why what it's doing isn‘t what it should be doing.

18-0Oct-1998 Version 5.005_02 37

perlfaq3 Perl Programmers Reference Guide perlfaq3

How do | profile my Perl programs?

You should get the Devel::DProf module from CPAN, and also use Benchmark.pm from the standard
distribution. Benchmark lets you time specific portions of your code, while Devel::DProf gives detailed
breakdowns of where your code spends its time.

Here's a sample use of Benchmark:
use Benchmark;

@junk = ‘cat /etc/motd’;
$count = 10_000;

timethese($count, {

'map’ => sub { my @a = @junk;
map { s/a/b/ } @a;
return @a

h

'for’ => sub { my @a = @junk;
local $_;
for (@a) { sfa/bl };
return @a },

D

This is what it prints (on one machine—your results will be dependent on your hardware, operating system,
and the load on your machine):

Benchmark: timing 10000 iterations of for, map...
for: 4 secs (3.97 usr 0.01 sys = 3.98 cpu)
map: 6 secs (4.97 usr 0.00 sys = 4.97 cpu)

How do | cross-reference my Perl programs?

The B::Xref module, shipped with the new, alpha-release Perl compiler (not the general distribution prior to
the 5.005 release), can be used to generate cross—reference reports for Perl programs.

perl -MO=Xref[, OPTIONS] scripthame.plx

Is there a pretty—printer (formatter) for Perl?

There is no program that will reformat Perl as much as indent(1) does for C. The complex feedback between
the scanner and the parser (this feedback is what confuses the vgrind and emacs programs) makes it
challenging at best to write a stand—alone Perl parser.

Of course, if you simply follow the guidelines preristyle you shouldn‘t need to reformat. The habit of
formatting your code as you write it will help prevent bugs. Your editor can and should help you with this.
The perl-mode for emacs can provide a remarkable amount of help with most (but not all) code, and even
less programmable editors can provide significant assistance.

If you are used to usinggrind program for printing out nice code to a laser printer, you can take a stab at
this using http://www.perl.com/CPAN/doc/misc/tips/working.vgrind.entry, but the results are not particularly
satisfying for sophisticated code.

Is there a ctags for Perl?
There's a simple one at http://www.perl.com/CPAN/authors/id/TOMC/scripts/ptags.gz which may do the
trick.

Where can | get Perl macros for vi?

For a complete version of Tom Christiansen's vi configuration file, see
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/toms.exrc, the standard benchmark file for vi
emulators. This runs best with nvi, the current version of vi out of Berkeley, which incidentally can be built
with an embedded Perl interpreter — see http://www.perl.com/CPAN/src/misc.

38 Version 5.005_02 18-0Oct-1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

Where can | get perl-mode for emacs?
Since Emacs version 19 patchlevel 22 or so, there have been both a perl-mode.el and support for the perl
debugger built in. These should come with the standard Emacs 19 distribution.

In the perl source directory, you'll find a directory called "emacs”, which contains a cperl-mode that
color—codes keywords, provides context—sensitive help, and other nifty things.

Note that the perl-mode of emacs will have fits withain‘foo" (single quote), and mess up the
indentation and hilighting. You should be usfngain::foo" in new Perl code anyway, so this shouldn‘t
be an issue.

How can | use curses with Perl?

The Curses module from CPAN provides a dynamically loadable object module interface to a curses library.
A small demo can be found at the directory
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/rep; this program repeats a command and
updates the screen as needed, rendegimgs axusimilar totop.

How can | use X or Tk with Perl?

Tk is a completely Perl-based, object-oriented interface to the Tk toolkit that doesn't force you to use Tcl
just to get at Tk. Sx is an interface to the Athena Widget set. Both are available from CPAN. See the
directory http://www.perl.com/CPAN/modules/by—-category/08_User_Interfaces/

Invaluable for Perl/Tk programming are: the Perl/Tk FAQ at
http://w4.Ins.cornell.edu/~pvhp/ptk/ptk TOC.html , the Perl/Tk Reference Guide available at
http://www.perl.com/CPAN-local/authors/Stephen_O_Lidie/ , and the online manpages at
http://www-users.cs.umn.edu/~amundson/perl/perltk/toc.html .

How can | generate simple menus without using CGI or Tk?

The http://www.perl.com/CPAN/authors/id/SKUNZ/perimenu.v4.0.tar.gz module, which is curses-based,
can help with this.

What is undump?
See the next questions.

How can | make my Perl program run faster?

The best way to do this is to come up with a better algorithm. This can often make a dramatic difference.
Chapter 8 in the Camel has some efficiency tips in it you might want to look at. Jon Bentley's book
“Programming Pearls” (that's not a misspelling!) has some good tips on optimization, too. Advice on
benchmarking boils down to: benchmark and profile to make sure you‘re optimizing the right part, look for
better algorithms instead of microtuning your code, and when all else fails consider just buying faster
hardware.

A different approach is to autoload seldom-used Perl code. See the AutoSplit and AutoLoader modules in
the standard distribution for that. Or you could locate the bottleneck and think about writing just that part in

C, the way we used to take bottlenecks in C code and write them in assembler. Similar to rewriting in C is
the use of modules that have critical sections written in C (for instance, the PDL module from CPAN).

In some cases, it may be worth it to use the backend compiler to produce byte code (saving compilation
time) or compile into C, which will certainly save compilation time and sometimes a small amount (but not
much) execution time. See the question about compiling your Perl programs for more on the compiler—the
wins aren't as obvious as you'‘d hope.

If you're currently linking your perl executable to a shafédit.sq you can often gain a 10-25%
performance benefit by rebuilding it to link with a static libc.a instead. This will make a bigger perl
executable, but your Perl programs (and programmers) may thank you for it. S48TA&L file in the
source distribution for more information.

Unsubstantiated reports allege that Perl interpreters that use sfio outperform those that don'‘t (for 10 intensive
applications). To try this, see tHReSTALL file in the source distribution, especially the “Selecting File 10

18-0Oct-1998 Version 5.005_02 39

perlfaq3 Perl Programmers Reference Guide perlfaq3

mechanisms" section.

The undump program was an old attempt to speed up your Perl program by storing the already—compiled
form to disk. This is no longer a viable option, as it only worked on a few architectures, and wasn‘t a good
solution anyway.

How can | make my Perl program take less memory?

When it comes to time—space tradeoffs, Perl nearly always prefers to throw memory at a problem. Scalars in
Perl use more memory than strings in C, arrays take more that, and hashes use even more. While there's still

a lot to be done, recent releases have been addressing these issues. For example, as of 5.004, duplicate hash
keys are shared amongst all hashes using them, so require no reallocation.

In some cases, usirgybstr() orvec() to simulate arrays can be highly beneficial. For example, an
array of a thousand booleans will take at least 20,000 bytes of space, but it can be turned into one 125-byte
bit vector for a considerable memory savings. The standard Tie::SubstrHash module can also help for
certain types of data structure. If you‘'re working with specialist data structures (matrices, for instance)
modules that implement these in C may use less memory than equivalent Perl modules.

Another thing to try is learning whether your Perl was compiled with the system malloc or with Perl's builtin
malloc. Whichever one it is, try using the other one and see whether this makes a difference. Information
about malloc is in théNSTALL file in the source distribution. You can find out whether you are using
perl‘'s malloc by typingperl —-V:usemymalloc

Is it unsafe to return a pointer to local data?

No, Perl's garbage collection system takes care of this.

sub makeone {
my @a=(1..10);
return \@a;

}

for$i(1..10)¢{
push @many, makeone();

}
print $many[4][5], "\n";
print "@many\n";

How can | free an array or hash so my program shrinks?

You can‘t. On most operating systems, memory allocated to a program can never be returned to the system.
That's why long-running programs sometimes re—exec themselves. Some operating systems (notably,
FreeBSD) allegedly reclaim large chunks of memory that is no longer used, but it doesn‘t appear to happen
with Perl (yet). The Mac appears to be the only platform that will reliably (albeit, slowly) return memory to
the OS.

However, judicious use afy() on your variables will help make sure that they go out of scope so that Perl
can free up their storage for use in other parts of your program. A global variable, of course, never goes out
of scope, so you can't get its space automatically reclaimed, altbvoggt() ing and/ordelete() ing it

will achieve the same effect. In general, memory allocation and de-allocation isn‘t something you can or
should be worrying about much in Perl, but even this capability (preallocation of data types) is in the works.

How can | make my CGI script more efficient?

Beyond the normal measures described to make general Perl programs faster or smaller, a CGI program has
additional issues. It may be run several times per second. Given that each time it runs it will need to be
re—compiled and will often allocate a megabyte or more of system memory, this can be a killer. Compiling
into Cisn‘t going to help youbecause the process start—up overhead is where the bottleneck is.

There are two popular ways to avoid this overhead. One solution involves running the Apache HTTP server
(available from http://www.apache.org/) with either of the mod_perl or mod_fastcgi plugin modules.

40

Version 5.005_02 18-0Oct-1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

With mod_perl and the Apache::Registry module (distributed with mod_perl), httpd will run with an
embedded Perl interpreter which pre—compiles your script and then executes it within the same address
space without forking. The Apache extension also gives Perl access to the internal server API, so modules
written in Perl can do just about anything a module written in C can. For more on mod_perl, see
http://perl.apache.org/

With the FCGI module (from CPAN), a Perl executable compiled with sfio (se®NSIBALL file in the
distribution) and the mod_fastcgi module (available from http://www.fastcgi.com/) each of your perl scripts
becomes a permanent CGI daemon process.

Both of these solutions can have far-reaching effects on your system and on the way you write your CGI
scripts, so investigate them with care.

See http://www.perl.com/CPAN/modules/by-category/15_World_Wide_Web_HTML_HTTP_CGI/ .

A non-free, commerical product, “The Velocity Engine for Perl”, (http://www.binevolve.com/ or
http://www.binevolve.com/bine/vep) might also be worth looking at. It will allow you to increase the
performance of your perl scripts, upto 25 times faster than normal CGI perl by running in persistent perl
mode, or 4 to 5 times faster without any modification to your existing CGI scripts. Fully functional
evaluation copies are available from the web site.

How can | hide the source for my Perl program?

Delete it. :-) Seriously, there are a number of (mostly unsatisfactory) solutions with varying levels of
“security"’.

First of all, however, yowan't take away read permission, because the source code has to be readable in
order to be compiled and interpreted. (That doesn‘'t mean that a CGl script's source is readable by people on
the web, though, only by people with access to the filesystem) So you have to leave the permissions at the
socially friendly 0755 level.

Some people regard this as a security problem. If your program does insecure things, and relies on people
not knowing how to exploit those insecurities, it is not secure. It is often possible for someone to determine
the insecure things and exploit them without viewing the source. Security through obscurity, the name for
hiding your bugs instead of fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN), but crackers might be able to decrypt

it. You can try using the byte code compiler and interpreter described below, but crackers might be able to
de—-compile it. You can try using the native—code compiler described below, but crackers might be able to

disassemble it. These pose varying degrees of difficulty to people wanting to get at your code, but none can
definitively conceal it (this is true of every language, not just Perl).

If you're concerned about people profiting from your code, then the bottom line is that nothing but a
restrictive licence will give you legal security. License your software and pepper it with threatening
statements like “This is unpublished proprietary software of XYZ Corp. Your access to it does not give you
permission to use it blah blah blah.” We are not lawyers, of course, so you should see a lawyer if you want
to be sure your licence's wording will stand up in court.

How can | compile my Perl program into byte code or C?

Malcolm Beattie has written a multifunction backend compiler, available from CPAN, that can do both these
things. Itis included in the perl5.005 release, but is still considered experimental. This means it's fun to play
with if you‘re a programmer but not really for people looking for turn—key solutions.

Merely compiling into C does not in and of itself guarantee that your code will run very much faster. That's
because except for lucky cases where a lot of native type inferencing is possible, the normal Perl run time
system is still present and so your program will take just as long to run and be just as big. Most programs
save little more than compilation time, leaving execution no more than 10-30% faster. A few rare programs
actually benefit significantly (like several times faster), but this takes some tweaking of your code.

You'll probably be astonished to learn that the current version of the compiler generates a compiled form of
your script whose executable is just as big as the original perl executable, and then some. That's because as

18-0Oct-1998 Version 5.005_02 41

perlfaq3 Perl Programmers Reference Guide perlfaq3

currently written, all programs are prepared for adutil() statement. You can tremendously reduce this
cost by building a shardibperl.so library and linking against that. See #tNSTALL podfile in the perl
source distribution for details. If you link your main perl binary with this, it will make it miniscule. For
example, on one author's systeosr/bin/perlis only 11Kk in size!

In general, the compiler will do nothing to make a Perl program smaller, faster, more portable, or more
secure. In fact, it will usually hurt all of those. The executable will be bigger, your VM system may take
longer to load the whole thing, the binary is fragile and hard to fix, and compilation never stopped software
piracy in the form of crackers, viruses, or bootleggers. The real advantage of the compiler is merely
packaging, and once you see the size of what it makes (well, unless you use dilgbenext), you'll
probably want a complete Perl install anyway.

How can | get #!perl towork on [MS-DOS,NT,...]?
For OS/2 just use

extproc perl =S —your_switches

as the first line irf.cmd file (-S due to a bug in cmd.exe's ‘extproc’ handling). For DOS one should first
invent a corresponding batch file, and codify iINbTERNATIVE_SHEBANGsee thdNSTALL file in the
source distribution for more information).

The Win95/NT installation, when using the ActiveState port of Perl, will modify the Registry to associate the
.pl extension with the perl interpreter. If you install another port (Gurusaramy Sarathy's is the
recommended Win95/NT port), or (eventually) build your own WIin95/NT Perl using WinGCC, then you'll
have to modify the Registry yourself.

Macintosh perl scripts will have the the appropriate Creator and Type, so that double-clicking them will
invoke the perl application.

IMPORTANT! Whatever you do, PLEASE don't get frustrated, and just throw the perl interpreter into your
cgi—bin directory, in order to get your scripts working for a web server. This is an EXTREMELY big
security risk. Take the time to figure out how to do it correctly.

Can | write useful perl programs on the command line?
Yes. Readperlrun for more information. Some examples follow. (These assume standard Unix shell
quoting rules.)
sum first and last fields
perl —lane 'print $F[0] + $F[-1] *
identify text files
perl —le 'for(@ARGV) {print if -f && -T _} *
remove (most) comments from C program
perl —0777 —pe 's{*.*?*/}{}gs’ foo.c
make file a month younger than today, defeating reaper daemons
perl —e '$X=24*60*60; utime(time(),time() + 30 * $X,@ARGV)’ *
find first unused uid
perl —le '$i++ while getpwuid($i); print $i’

display reasonable manpath
echo $PATH | perl —nl -072 -e"’
s![M+]*$!man!&&—-d&&!$s{$_}++&&push@m,$_;END{print'@m"}

Ok, the last one was actually an obfuscated perl entry. :-)

Why don'‘t perl one-liners work on my DOS/Mac/VMS system?

The problem is usually that the command interpreters on those systems have rather different ideas about
guoting than the Unix shells under which the one-liners were created. On some systems, you may have to
change single—quotes to double ones, which you @&t do on Unix or Plan9 systems. You might also

42 Version 5.005_02 18-0Oct-1998

perlfaq3 Perl Programmers Reference Guide perlfaq3

have to change a single % to a %%.
For example:

Unix
perl —e "print "Hello world\n™

DOS, etc.
perl —e "print \"Hello world\n\""

Mac
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

#VMS
perl —e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command interpreter. Under Unix, the first two
often work. Under DOS, it's entirely possible neither works. If 4DOS was the command shell, you‘d
probably have better luck like this:

perl —e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

Under the Mac, it depends which environment you are using. The MacPerl shell, or MPW, is much like
Unix shells in its support for several quoting variants, except that it makes free use of the Mac's non—-ASCII
characters as control characters.

There is no general solution to all of this. It is a mess, pure and simple. Sucks to be away from Unix, huh?
)

[Some of this answer was contributed by Kenneth Albanowski.]

Where can | learn about CGI or Web programming in Perl?

For modules, get the CGI or LWP modules from CPAN. For textbooks, see the two especially dedicated to
web stuff in the question on books. For problems and questions related to the web, like “Why do | get 500

Errors” or “Why doesn't it run from the browser right when it runs fine on the command line”, see these
sources:

WWW Security FAQ
http://www.w3.org/Security/Fag/

Web FAQ
http://www.boutell.com/fag/

CGI FAQ
http://www.webthing.com/page.cgi/cgifaq

HTTP Spec
http://www.w3.org/pub/WWW/Protocols/HTTP/

HTML Spec
http://www.w3.0rg/TR/REC-html40/
http://www.w3.org/pub/WWW/MarkUp/

CGl Spec
http://www.w3.0rg/CGl/

CGlI Security FAQ
http://www.go2net.com/people/paulp/cgi—security/safe—cgi.txt

Where can | learn about object-oriented Perl programming?

perltootis a good place to start, and you canpegobj andperlbotfor reference. Perltoot didn‘t come out
until the 5.004 release, but you can get a copy (in pod, html, or postscript) from
http://www.perl.com/CPAN/doc/FMTEYEWTK/ .

18-0Oct-1998 Version 5.005_02 43

perlfaq3 Perl Programmers Reference Guide perlfaq3

Where can | learn about linking C with Perl? [h2xs, xsubpp]

If you want to call C from Perl, start witherlxstuf moving on toperlxs xsubpp andperlguts If you want
to call Perl from C, then reguerlembedperlcall, andperlguts Don't forget that you can learn a lot from
looking at how the authors of existing extension modules wrote their code and solved their problems.

I've read perlembed, perlguts, etc., but | can't embed perl in

my C program, what am | doing wrong?

Download the ExtUtils::Embed kit from CPAN and run ‘make test'’. If the tests pass, read the pods again
and again and again. |If they fail, sperlbug and send a bugreport with the outputnofke test
TEST_VERBOSE=hlong withperl -V

When | tried to run my script, | got this message. What does it

mean?

perldiag has a complete list of perl's error messages and warnings, with explanatory text. You can also use
the splain program (distributed with perl) to explain the error messages:

perl program 2>diag.out
splain [-V] [-p] diag.out

or change your program to explain the messages for you:
use diagnostics;
or

use diagnostics —verbose;

What's MakeMaker?

This module (part of the standard perl distribution) is designed to write a Makefile for an extension module
from a Makefile.PL. For more information, seetUtils::MakeMaker

AUTHOR AND COPYRIGHT

Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as an integrated part of the Standard Distribution of Perl or of its documentation (printed or
otherwise), this works is covered under Perl‘'s Artistic Licence. For separate distributions of all or part of
this FAQ outside of that, seerlfag

Irrespective of its distribution, all code examples here are public domain. You are permitted and encouraged
to use this code and any derivatives thereof in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit to the FAQ would be courteous but is not required.

44

Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

NAME
perlfag4 — Data ManipulatiorfRevision: 1.26$%, $Date: 1998/08/05 12:04:08)

DESCRIPTION

The section of the FAQ answers question related to the manipulation of data as numbers, dates, strings,
arrays, hashes, and miscellaneous data issues.

Data: Numbers

Why am | getting long decimals (eg, 19.9499999999999) instead of the numbers | should be getting
(eg, 19.95)?
The infinite set that a mathematician thinks of as the real numbers can only be approximate on a computer,
since the computer only has a finite number of bits to store an infinite number of, um, numbers.

Internally, your computer represents floating—point numbers in binary. Floating—point numbers read in from
a file or appearing as literals in your program are converted from their decimal floating—point representation
(eg, 19.95) to the internal binary representation.

However, 19.95 can't be precisely represented as a binary floating—point number, just like 1/3 can‘t be
exactly represented as a decimal floating—point number. The computer's binary representation of 19.95,
therefore, isn‘t exactly 19.95.

When a floating—point number gets printed, the binary floating—point representation is converted back to
decimal. These decimal numbers are displayed in either the format you specifyrimitf) , or the

current output format for numbers (s&# in perlvar if you use print.$# has a different default value

in Perl5 than it did in Perl4. Changifg yourself is deprecated.

This affectsall computer languages that represent decimal floating—point numbers in binary, not just Perl.
Perl provides arbitrary—precision decimal numbers with the Math::BigFloat module (part of the standard Perl
distribution), but mathematical operations are consequently slower.

To get rid of the superfluous digits, just use a formatggtf("%.2f", 19.95)) to get the required
precision. Se&loating—point Arithmetic in perlop

Why isn't my octal data interpreted correctly?

Perl only understands octal and hex numbers as such when they occur as literals in your program. If they are
read in from somewhere and assigned, no automatic conversion takes place. You must expbcit{y use

or hex() if you want the values converteadct() interprets both hex ("0x350") numbers and octal ones
("0350" or even without the leading "0", like "377"), whilex() only converts hexadecimal ones, with or
without a leading "0x", like "0x255", "3A", "ff", or "deadbeef".

This problem shows up most often when people try usihghod() , mkdir() , umask() , or
sysopen() , which all want permissions in octal.

chmod(644, $file); # WRONG —- perl —w catches this
chmod(0644, $file); # right
Does perl have a round function? What about ceil() and floor() ? Trig functions?
Remember thaht() merely truncates toward 0. For rounding to a certain number of digitatf()
or printf() is usually the easiest route.
printf("%.3f", 3.1415926535); # prints 3.142

The POSIX module (part of the standard perl distribution) implenoeii(3 |, floor() , and a number of
other mathematical and trigonometric functions.

use POSIX;
$ceil = ceil(3.5); #4
$floor =floor(3.5); #3

In 5.000 to 5.003 Perls, trigopnometry was done in the Math::Complex module. With 5.004, the Math::Trig

18-0Oct-1998 Version 5.005_02 45

perlfaq4 Perl Programmers Reference Guide perlfaq4

module (part of the standard perl distribution) implements the trigonometric functions. Internally it uses the
Math::Complex module and some functions can break out from the real axis into the complex plane, for
example the inverse sine of 2.

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

How do | convert bits into ints?

To turn a string of 1s and Os liK110110 into a scalar containing its binary value, use pthek()
function (documented ipack in perlfuny:

$decimal = pack('B8’, '10110110’);
Here's an example of going the other way:
$binary_string = join("’, unpack('B*', "\x29"));

How do | multiply matrices?

Use the Math::Matrix or Math::MatrixReal modules (available from CPAN) or the PDL extension (also
available from CPAN).

How do | perform an operation on a series of integers?
To call a function on each element in an array, and collect the results, use:
@results = map { my_func($_) } @array;
For example:
@triple = map { 3*$_} @single;
To call a function on each element of an array, but ignore the results:

foreach Siterator (@array) {
&my_func($iterator);

}

To call a function on each integer in a (small) range,camuuse:
@results = map { &my_func($_) } (5 .. 25);

but you should be aware that the operator creates an array of all integers in the range. This can take a lot
of memory for large ranges. Instead use:

@results = ();
for ($i=5; $i < 500_005; $i++) {
push(@results, &my_func($i));
}
How can | output Roman numerals?
Get the http://www.perl.com/CPAN/modules/by-module/Roman module.

Why aren‘t my random numbers random?
The short explanation is that you‘re getting pseudorandom numbers, not random ones, because computers

are good at being predictable and bad at being random (despite appearances caused by bugs in your programs

:=). A longer explanation is available on http://www.perl.com/CPAN/doc/FMTEYEWTK/random, courtesy
of Tom Phoenix. John von Neumann said, “Anyone who attempts to generate random numbers by
deterministic means is, of course, living in a state of sin.”

You should also check out the Math::TrulyRandom module from CPAN. It uses the imperfections in your
system's timer to generate random numbers, but this takes quite a while. If you want a better pseudorandom
generator than comes with your operating system, look at “Numerical Recipes in C" at
http://nr.harvard.edu/nr/bookc.html .

46 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

Data: Dates

How do I find the week—-of-the-year/day—of-the-year?
The day of the year is in the array returneddogaltime() (seelocaltime in perlfunk

$day_of_year = (localtime(time()))[7];
or more legibly (in 5.004 or higher):

use Time::localtime;
$day_of_year = localtime(time())—>yday;

You can find the week of the year by dividing this by 7:
$week_of_year = int($day_of_year / 7);

Of course, this believes that weeks start at zero. The Date::Calc module from CPAN has a lot of date
calculation functions, including day of the year, week of the year, and so on. Note that not all business
consider “week 1" to be the same; for example, American business often consider the first week with a
Monday in it to be Work Week #1, despite ISO 8601, which consider WWZ1 to be the frist week with a
Thursday in it.

How can | compare two dates and find the difference?
If you're storing your dates as epoch seconds then simply subtract one from the other. If you‘'ve got a
structured date (distinct year, day, month, hour, minute, seconds values) then use one of the Date::Manip and
Date::Calc modules from CPAN.

How can | take a string and turn it into epoch seconds?
If it's a regular enough string that it always has the same format, you can split it up and pass the parts to
timelocal in the standard Time::Local module. Otherwise, you should look into the Date::Calc and
Date::Manip modules from CPAN.

How can | find the Julian Day?

Neither Date::Manip nor Date::Calc deal with Julian days. Instead, there is an example of Julian date
calculation that should help you in
http://www.perl.com/CPAN/authors/David_Muir_Sharnoff/modules/Time/JulianDay.pm.gz .

Does Perl have a year 2000 problem? Is Perl Y2K compliant?

Short answer: No, Perl does not have a Year 2000 problem. Yes, Perl is Y2K compliant. The programmers
you're hired to use it, however, probably are not.

Long answer: Perl is just as Y2K compliant as your pencil—no more, and no less. The date and time
functions supplied with perl (gmtime and localtime) supply adequate information to determine the year well
beyond 2000 (2038 is when trouble strikes for 32—-bit machines). The year returned by these functions when
used in an array context is the year minus 1900. For years between 1910 and 1889ptsto be a

2-digit decimal number. To avoid the year 2000 problem simply do not treat the year as a 2—digit number. It

isn‘t.
When gmtime() and localtime() are used in scalar context they return a timestamp string that
contains a fully-expanded year. For exampiimestamp = gmtime(1005613200) sets

$timestamp to "Tue Nov 13 01:00:00 2001". There's no year 2000 problem here.

That doesn‘t mean that Perl can‘t be used to create non—-Y2K compliant programs. It can. But so can your
pencil. It's the fault of the user, not the language. At the risk of inflaming the NRA: “Perl doesn't break
Y2K, people do.” See http://language.perl.com/news/y2k.html for a longer exposition.

Data: Strings

How do | validate input?

The answer to this question is usually a regular expression, perhaps with auxiliary logic. See the more
specific questions (numbers, mail addresses, etc.) for details.

18-0Oct-1998 Version 5.005_02 47

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | unescape a string?

It depends just what you mean by “escape”. URL escapes are dealt wihfeqQ Shell escapes with the
backslash\() character are removed with:

sN\(.)/$1/g;
This won‘t expand\n" or"\t" or any other special escapes.
How do | remove consecutive pairs of characters?
To turn"abbcced” into "abccd”
s/()\1/$1/g;

How do | expand function calls in a string?

This is documented iperlref. In general, this is fraught with quoting and readability problems, but it is
possible. To interpolate a subroutine call (in list context) into a string:

print "My sub returned @{[mysub(1,2,3)]} that time.\n",
If you prefer scalar context, similar chicanery is also useful for arbitrary expressions:
print "That yields ${\($n + 5)} widgets\n";

Version 5.004 of Perl had a bug that gave list context to the expressn.jin but this is fixed in
version 5.005.

See also “How can | expand variables in text strings?" in this section of the FAQ.

How do I find matching/nesting anything?

This isn't something that can be done in one regular expression, no matter how complicated. To find
something between two single characters, a pattermd{Ke]*)x/ will get the intervening bits ifs1.

For multiple ones, then something more likpha(.*?)omega/ would be needed. But none of these
deals with nested patterns, nor can they. For that you'll have to write a parser.

If you are serious about writing a parser, there are a number of modules or oddities that will make your life a
lot easier. There is the CPAN module Parse::RecDescent, the standard module Text::Balanced, the byacc
program, and Mark—-Jason Dominus's excellgntool at http://www.plover.com/~mjd/perl/py/ .

One simple destructive, inside—out approach that you might try is to pull out the smallest nesting parts one at
atime:

while (s//BEGIN((?:(?'BEGIN)(?!END).)*)END/gs) {
do something with $1
}

How do | reverse a string?
Usereverse() in scalar context, as documentededrerse

$reversed = reverse $string;

How do | expand tabs in a string?
You can do it yourself:

1 while $string =~ s/\t+/" ’ x (length($&) * 8 — length($*) % 8)/e;
Or you can just use the Text::Tabs module (part of the standard perl distribution).

use Text::Tabs;
@expanded_lines = expand(@lines_with_tabs);

How do | reformat a paragraph?
Use Text::Wrap (part of the standard perl distribution):

48 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

use Text:Wrap;
print wrap("\t*, ’ ', @paragraphs);

The paragraphs you give to Text::Wrap should not contain embedded newlines. Text::Wrap doesn't justify
the lines (flush-right).

How can | access/change the first N letters of a string?
There are many ways. If you just want to grab a copysuisstr()

$first_byte = substr($a, 0, 1);

If you want to modify part of a string, the simplest way is often tcsubstr() as an Ivalue:
substr($a, 0, 3) = "Tom";

Although those with a pattern matching kind of thought process will likely prefer:
$a =~ s/*...[Tom/;

How do | change the Nth occurrence of something?

You have to keep track of N yourself. For example, let's say you want to change the fifth occurrence of
"whoever" or"whomever" into"whosoever" or"whomsoever" , case insensitively.

$count = 0;
s{((whom?)ever)}{
++$count == # is it the 5th?

? "${2}soever" # yes, swap

1 $1 # renege and leave it there
Yigex;

In the more general case, you can uséghenodifier in awhile loop, keeping count of matches.

$WANT = 3;
$count = 0;

while (/(\w+)\s+fish\b/gi) {
if (++$count == $WANT) {
print "The third fish is a $1 one.\n";
Warning: don't ‘last’ out of this loop
}
}

That prints out"The third fish is a red one." You can also use a repetition count and
repeated pattern like this:

1(?:\wH\s+fish\s+){2}(\w+)\s+fishl/i;

How can | count the number of occurrences of a substring within a string?

There are a number of ways, with varying efficiency: If you want a count of a certain single character (X)
within a string, you can use th#/ function like so:

$string = "ThisXlineXhasXsomeXx’'sXinXit":
$count = ($string =~ tr/X//);
print "There are $count X charcters in the string";

This is fine if you are just looking for a single character. However, if you are trying to count multiple
character substrings within a larger stritrgj/ won'‘t work. What you can do is wrapndile() loop
around a global pattern match. For example, let's count negative integers:

$string = "-9 55 48 -2 23 =76 4 14 -44";
while ($string =~ /-\d+/g) { $count++ }
print "There are $count negative numbers in the string";

18-0Oct-1998 Version 5.005_02 49

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | capitalize all the words on one line?
To make the first letter of each word upper case:

$line =~ sAb(\WwW)A\US$1/g;

This has the strange effect of turnirdph‘t do it "into "Don'T Do It ". Sometimes you might want
this, instead (Suggested by Brian Foy):

Pstring =~ s/ (
(Mw) #at the beginning of the line
| #or
(\s\w) #preceded by whitespace

)
NU$1/xg;
$string =~ /([\Ww']+)Au\L$1/g;

To make the whole line upper case:
$line = uc($line);

To force each word to be lower case, with the first letter upper case:
$line =~ s/(\Ww+)\u\L$1/g;

You can (and probably should) enable locale awareness of those characters by pleenigcale
pragma in your program. Seerllocalefor endless details on locales.

How can | split a [character] delimited string except when inside
[character]? (Comma-—separated files)

Take the example case of trying to split a string that is comma-separated into its different fields. (We'll
pretend you said comma-separated, not comma-delimited, which is different and almost never what you
mean.) You can‘t ussplit(/,/) because you shouldn't split if the comma is inside quotes. For
example, take a data line like this:

SARO001,"™,"Cimetrix, Inc","Bob Smith","CAM",N,8,1,0,7,"Error, Core Dumped"

Due to the restriction of the quotes, this is a fairly complex problem. Thankfully, we have Jeffrey Friedl,
author of a highly recommended book on regular expressions, to handle these for us. He suggests (assuming
your string is contained itext):
@new = ();
push(@new, $+) while $text =~ m{
"(NW*(2:\ NN ¥)*)",? - # groups the phrase inside the quotes
| (("]+),?
| L]
1o
push(@new, undef) if substr($text,-1,1) eq ’,’;

If you want to represent quotation marks inside a quotation—-mark—delimited field, escape them with
backslashes (etijke \"this\"" . Unescaping them is a task addressed earlier in this section.

Alternatively, the Text::ParseWords module (part of the standard perl distribution) lets you say:

use Text::ParseWords;

@new = quotewords(",", 0, $text);

How do I strip blank space from the beginning/end of a string?
Although the simplest approach would seem to be:

$string =~ s/Ms*(*?)\s*$/$1/;

50 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

This is unneccesarily slow, destructive, and fails with embedded newlines. It is much better faster to do this
in two steps:

$string =~ s/Ms+//;
$string =~ sN\s+$//;

Or more nicely written as:

for ($string) {
s/MNs+//;
s\s+$//;
}

This idiom takes advantage of tfereach loop's aliasing behavior to factor out common code. You can
do this on several strings at once, or arrays, or even the values of a hash if you use a slide:

trim whitespace in the scalar, the array,

and all the values in the hash

foreach ($scalar, @array, @hash{keys %hash}) {
siMs+1,
sN\s+$//;

}

How do | extract selected columns from a string?

Use substr() or unpack() , both documented iperlfunc If you prefer thinking in terms of columns
instead of widths, you can use this kind of thing:

determine the unpack format needed to split Linux ps output
arguments are cut columns
my $fmt = cut2fmt(8, 14, 20, 26, 30, 34, 41, 47, 59, 63, 67, 72);
sub cut2fmt {
my(@positions) = @_;
my $template =";
my $lastpos =1;
for my $place (@positions) {
$template .= "A" . ($place - $lastpos) . " ";
$lastpos = $place;

}
$template .= "A*";
return $template;

}

How do I find the soundex value of a string?
Use the standard Text::Soundex module distributed with perl.

How can | expand variables in text strings?
Let's assume that you have a string like:

$text = 'this has a $foo in it and a $bar’;
If those were both global variables, then this would suffice:
Stext =~ sN\$(\w+)/${$1}/g;
But since they are probably lexicals, or at least, they could be, you‘d have to do this:

$text =~ s/(\$\w+)/$1/eeg;
die if $@; # needed on /ee, not /e

It's probably better in the general case to treat those variables as entries in some special hash. For example:

18-0Oct-1998 Version 5.005_02 51

perlfaq4 Perl Programmers Reference Guide perlfaq4

%user_defs = (
foo => 23,
bar => 19,
)i
$text =~ s\$(\w+)/$user_defs{$1}/g;
See also “How do | expand function calls in a string?" in this section of the FAQ.

What's wrong with always quoting " $vars"?

The problem is that those double—quotes force stringification, coercing numbers and references into strings,
even when you don‘t want them to be.

If you get used to writing odd things like these:

print "$var"; # BAD
$new = "$old"; # BAD
somefunc("$var"); # BAD

You'll be in trouble. Those should (in 99.8% of the cases) be the simpler and more direct:

print $var;
$new = $old;
somefunc($var);

Otherwise, besides slowing you down, you‘re going to break code when the thing in the scalar is actually
neither a string nor a number, but a reference:

func(\@array);
sub func {
my $aref = shift;
my $oref = "$aref’; # WRONG
}
You can also get into subtle problems on those few operations in Perl that actually do care about the

difference between a string and a number, such as the magicautoincrement operator or the
syscall() function.

Stringification also destroys arrays.

@lines = ‘command’;
print "@lines"; # WRONG - extra blanks
print @lines; # right
Why don‘t my <<HERE documents work?
Check for these three things:

1. There must be no space after the << part.
2. There (probably) should be a semicolon at the end.
3. You can't (easily) have any space in front of the tag.

If you want to indent the text in the here document, you can do this:

all in one

(VAR = <<HERE_TARGET) =~ s/Ms+//gm;
your text
goes here

HERE_TARGET

But the HERE_TARGET must still be flush against the margin. If you want that indented also, you'll have to
guote in the indentation.

($quote = <<’ FINIS’) =~ s/Ms+//gm;

52 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

...we will have peace, when you and all your works have
perished——and the works of your dark master to whom you
would deliver us. You are a liar, Saruman, and a corrupter
of men’s hearts. ——Theoden in /usr/src/perl/taint.c
FINIS
$quote =~ s/\s*——\n—-/;

A nice general-purpose fixer—upper function for indented here documents follows. It expects to be called
with a here document as its argument. It looks to see whether each line begins with a common substring, and
if so, strips that off. Otherwise, it takes the amount of leading white space found on the first line and
removes that much off each subsequent line.

sub fix {
local $_ = shift;
my ($white, $leader); # common white space and common leading string
if (IMNs*(2:([MWAs]+H)(\s*).X\n)(?2:\s*\1\22.1\n)+$/) {
($white, $leader) = ($2, quotemeta($1));
}else {
($white, $leader) = (I"(\s+)/, ");

s/Ms*?$leader(?:$white)?//gm;
return $_;

}

This works with leading special strings, dynamically determined:

$remember_the _main = fix<x<’ MAIN_INTERPRETER_LOOP;
@@@ int
@@@ runops() {
@@@ SAVEI32(runlevel);
@@@ runlevel++;
@@@ while (op = (*op—>op_ppaddr)()) ;
@@@ TAINT_NOT;
@@@ returnO;

@O}
MAIN_INTERPRETER_LOOP

Or with a fixed amount of leading white space, with remaining indentation correctly preserved:

$poem = fixx<<EVER_ON_AND_ON;
Now far ahead the Road has gone,
And | must follow, if | can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? | cannot say.
——Bilbo in /usr/src/perl/pp_ctl.c
EVER_ON_AND_ON

Data: Arrays

What is the difference between $array[l] and @array[1]?

The former is a scalar value, the latter an array slice, which makes it a list with one (scalar) value. You
should use$ when you want a scalar value (most of the time) and @ when you want a list with one scalar
value in it (very, very rarely; nearly never, in fact).

Sometimes it doesn‘t make a difference, but sometimes it does. For example, compare:

$good[0] = ‘some program that outputs several lines’;

18-0Oct-1998 Version 5.005_02 53

perlfaq4 Perl Programmers Reference Guide perlfaq4

with
@bad[0] = ‘same program that outputs several lines’;
The-w flag will warn you about these matters.

How can | extract just the unique elements of an array?
There are several possible ways, depending on whether the array is ordered and whether you wish to
preserve the ordering.
a) If @in is sorted, and you want @out to be sorted:
(this assumes all true values in the array)

$prev = 'nonesuch’;
@out = grep($_ ne $prev && ($prev =$_), @in);

This is nice in that it doesn‘t use much extra memory, simulating unig(1)‘s behavior of removing only
adjacent duplicates. It's less nice in that it won‘t work with false values like undef, 0, or "™; "0 but
true" is ok, though.
b) If you don‘t know whether @in is sorted:
undef %saw;
@out = grep(I$saw{$_}++, @in);
c) Like (b), but @in contains only small integers:
@out = grep(!$saw[$_]++, @in);
d) A way to do (b) without any loops or greps:
undef %saw;
@saw{@in} = ();
@out = sort keys %saw; # remove sort if undesired
e) Like (d), but @in contains only small positive integers:
undef @ary;
@ary[@in] = @in;
@out = @ary;
How can | tell whether a list or array contains a certain element?

Hearing the word "in" is amdication that you probably should have used a hash, not a list or array, to store
your data. Hashes are designed to answer this question quickly and efficiently. Arrays aren‘t.

That being said, there are several ways to approach this. If you are going to make this query many times
over arbitrary string values, the fastest way is probably to invert the original array and keep an associative
array lying about whose keys are the first array's values.

@blues = gw/azure cerulean teal turquoise lapis—lazuli/;
undef %is_blue;
for (@blues) { $is_blue{$_} =1}

Now you can check wheth&is_blue{$some_color}. It might have been a good idea to keep the
blues all in a hash in the first place.

If the values are all small integers, you could use a simple indexed array. This kind of an array will take up
less space:

@primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31);
undef @is_tiny_prime;
for (@primes) { $is_tiny_prime[$_]=1;}

Now you check whetheSis_tiny_prime[$some_number].

If the values in question are integers instead of strings, you can save quite a lot of space by using bit strings

54 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

instead:

@articles = (1..10, 150..2000, 2017);
undef $read;
for (@articles) { vec($read,$_,1) =1}

Now check whethevec($read,$n,1) is true for somé&n.
Please do not use

$is_there = grep $_ eq $whatever, @array;
or worse yet

$is_there = grep /$whatever/, @array;

These are slow (checks every element even if the first matches), inefficient (same reason), and potentially
buggy (what if there are regexp characterdvitatever?).

How do | compute the difference of two arrays? How do | compute the intersection of two arrays?

Use a hash. Here's code to do both and more. It assumes that each element is unique in a given array:

@union = @intersection = @difference = ();
%count = ();
foreach $element (@arrayl, @array2) { $count{$element}++ }
foreach $element (keys %count) {
push @union, $element;
push @{ $count{$element} > 1 ? \@intersection : \@difference }, $element;

}

How do I find the first array element for which a condition is true?
You can use this if you care about the index:

for ($i=0; $i < @array; $i++) {
if ($array[$i] eq "Waldo") {
$found_index = $i;
last;
}
}

Now $found_index has what you want.

How do | handle linked lists?
In general, you usually don't need a linked list in Perl, since with regular arrays, you can push and pop or
shift and unshift at either end, or you can use splice to add and/or remove arbitrary number of elements at
arbitrary points. Both pop and shift are both O(1) operations on perl's dynamic arrays. In the absence of
shifts and pops, push in general needs to reallocate on the order every log(N) times, and unshift will need to
copy pointers each time.

If you really, really wanted, you could use structures as descrilqggtloscor perltootand do just what the
algorithm book tells you to do.

How do | handle circular lists?
Circular lists could be handled in the traditional fashion with linked lists, or you could just do something like
this with an array:

unshift(@array, pop(@array)); # the last shall be first
push(@array, shift(@array)); # and vice versa

18-0Oct-1998 Version 5.005_02 55

perlfaq4 Perl Programmers Reference Guide perlfaq4

How do | shuffle an array randomly?
Use this:

fisher_yates_shuffle(\@array) :
generate a random permutation of @array in place
sub fisher_yates_shuffle {
my $array = shift;
my $i;
for ($i = @$array; ——$i;) {
my $j = int rand ($i+1);
next if $i == $j;
@$%array[$i,$]] = @%array[$j,$i];
}
}

fisher_yates_shuffle(\@array); # permutes @array in place

You've probably seen shuffling algorithms that works using splice, randomly picking another element to
swap the current element with:

srand;

@new = ();

@old =1 .. 10; # justademo

while (@old) {

push(@new, splice(@old, rand @old, 1));

}
This is bad because splice is already O(N), and since you do it N times, you just invented a quadratic
algorithm; that is, O(N**2). This does not scale, although Perl is so efficient that you probably won‘t notice
this until you have rather largish arrays.

How do | process/modify each element of an array?

Usefor /fforeach

for (@lines) {

s/foo/bar/; # change that word
YIXZIZXI, # swap those letters

}

Here's another; let's compute spherical volumes:
for (@volumes = @radii) { # @volumes has changed parts
$_ *k— 3;
$ *=(4/3) * 3.14159; # this will be constant folded
}

If you want to do the same thing to modify the values of the hash, you may not wséutee function,
oddly enough. You need a slice:

for $orbit (@orbits{keys %orbits}) {
($orbit **= 3) *= (4/3) * 3.14159;
}

How do | select a random element from an array?
Use theand() function (seeand):

at the top of the program:
srand; # not needed for 5.004 and later

then later on

56 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

$index =rand @array;
$element = $array[$index];

Make sure yownly call srand once per program, if thdfyou are calling it more than once (such as before
each call to rand), you‘re almost certainly doing something wrong.

How do | permute N elements of a list?

Here's a little program that generates all permutations of all the words on each line of input. The algorithm
embodied in th@ermute() function should work on any list:

#1/usr/bin/perl —n
tsc—permute: permute each word of input
permute([split], []);
sub permute {
my @items = @{ $_[0] };
my @perms = @{ $_[1] };
unless (@items) {
print "@perms\n";
}else {
my(@newitems, @newperms,$i);
foreach $i (0 .. $#items) {
@newitems = @items;
@newperms = @perms;
unshift(@newperms, splice(@newitems, $i, 1));
permute([@newitems], [@newperms]);
}
}
}

How do | sort an array by (anything)?
Supply a comparison function sort() (described irsor):

@list = sort { $a <=> $b } @list;

The default sort function is cmp, string comparison, which would(4p2, 10) into (1, 10, 2)
<=>, used above, is the numerical comparison operator.

If you have a complicated function needed to pull out the part you want to sort on, then don‘t do it inside the
sort function. Pull it out first, because the sort BLOCK can be called many times for the same element.
Here's an example of how to pull out the first word after the first number on each item, and then sort those
words case-insensitively.

@idx = ();
for (@data) {
(Bitem) = Ad+\s*(\S+)/;
push @idx, uc($item);
}
@sorted = @data[sort { $idx[$a] cmp $idx[$b] } O .. $#idx |;

Which could also be written this way, using a trick that's come to be known as the Schwartzian Transform:

@sorted = map {$_->[0]}
sort { $a—>[1] cmp $b—>[1] }
map {[$_, uc((Nd+\s*(\S+)/)[0]] } @data;

If you need to sort on several fields, the following paradigm is useful.

@sorted = sort { field1($a) <=> field1($b) ||
field2($a) cmp field2($b) ||
field3($a) cmp field3($b)

18-0Oct-1998 Version 5.005_02 57

perlfaq4 Perl Programmers Reference Guide perlfaq4

} @data;
This can be conveniently combined with precalculation of keys as given above.
See http://www.perl.com/CPAN/doc/FMTEYEWTK/sort.html for more about this approach.
See also the question below on sorting hashes.

How do | manipulate arrays of bits?
Usepack() andunpack() , orelsevec() and the bitwise operations.

For example, this sevec to have bit N set i$ints[N] was set:

$vec =",
foreach(@ints) { vec($vec,$_,1) =1}

And here's how, given a vector §ivec, you can get those bits into your @ints array:

sub bitvec_to_list {
my $vec = shift;
my @ints;
Find null-byte density then select best algorithm
if ($vec =~ tr\0// / length $vec > 0.95) {
use integer;
my $i;
This method is faster with mostly null-bytes
while($vec =~ /[M0)/g) {
$i = -9 + 8 * pos $vec;
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
}
}else {
This method is a fast general algorithm
use integer;
my $bits = unpack "b*", $vec;
push @ints, 0 if $bits =~ s/*(\d)// && $1;
push @ints, pos $bits while($bits =~ /1/g);
}

return \@ints;

}

This method gets faster the more sparse the bit vector is. (Courtesy of Tim Bunce and Winfried Koenig.)

Why does defined() return true on empty arrays and hashes?
Seedefinedin the 5.004 release or later of Perl.

Data: Hashes (Associative Arrays)

How do | process an entire hash?
Use theeach() function (seesach) if you don't care whether it's sorted:
while (($key, $value) = each %hash) {

print "$key = $value\n”;
}

58 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

If you want it sorted, you'll have to ugereach() on the result of sorting the keys as shown in an earlier
guestion.

What happens if | add or remove keys from a hash while iterating over it?
Don‘t do that.

How do | look up a hash element by value?
Create a reverse hash:

%by value = reverse %by_key;
$key = $by_value{$value};

That's not particularly efficient. It would be more space-efficient to use:

while (($key, $value) = each %by_key) {
$by_value{$value} = $key;
}

If your hash could have repeated values, the methods above will only find one of the associated keys. This
may or may not worry you.

How can | know how many entries are in a hash?
If you mean how many keys, then all you have to do is take the scalar senskegkthe function:

$num_keys = scalar keys %hash;
In void context it just resets the iterator, which is faster for tied hashes.

How do | sort a hash (optionally by value instead of key)?

Internally, hashes are stored in a way that prevents you from imposing an order on key-value pairs. Instead,
you have to sort a list of the keys or values:

@keys = sort keys %hash; # sorted by key
@keys = sort {
$hash{$a} cmp $hash{$b}
} keys %hash; # and by value

Here we'll do a reverse numeric sort by value, and if two keys are identical, sort by length of key, and if that
fails, by straight ASCIl comparison of the keys (well, possibly modified by your locale pesésale.

@keys = sort {
$hash{$b} <=> $hash{$a}

|
length($b) <=> length($a)
|
$a cmp $b
} keys %hash;

How can | always keep my hash sorted?

You can look into using the DB_File module atid() using the$DB_BTREEhash bindings as
documented inin Memory Databases in DB_FileThe Tie::IxHash module from CPAN might also be
instructive.

What's the difference between "delete" and "undef" with hashes?

Hashes are pairs of scalars: the first is the key, the second is the value. The key will be coerced to a string,
although the value can be any kind of scalar: string, number, or reference. IBkeleys present in the
array, exists($key) will return true. The value for a given key can tedef , in which case

$array{$key} will be undef while $exists{$key} will return true. This corresponds tBkey,
undef) being in the hash.

Pictures help... here's tBéary table:

18-0Oct-1998 Version 5.005_02 59

perlfaq4

Perl Programmers Reference Guide

perlfaq4

keys values

And these conditions hold

$ary{'a’}
$ary{'d’}

defined $ary{'d’}
defined $ary{’a’}
exists $ary{'a’}

is true
is false
is true
is true
is true (perl5 only)

grep ($_eq’'a’, keys %ary) s true

If you now say
undef $ary{'a’}
your table now reads:

keys values

and these conditions now hold;

$ary{'a’}
$ary{'d’}

defined $ary{'d’}
defined $ary{’a’}
exists $ary{'a’}

changes in caps:

is FALSE
is false
is true
is FALSE
is true (perl5 only)

grep ($_eq’'a, keys %ary) is true

Notice the last two: you have an undef value, but a defined key!

Now, consider this:
delete $ary{'a’}
your table now reads:

keys values

and these conditions now hold;

$ary{'a’}
$ary{'d’}

defined $ary{'d’}
defined $ary{’a’}
exists $ary{'a’}

changes in caps:

is false
is false
is true
is false
is FALSE (perl5 only)

60

Version 5.005_02

18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

grep ($_eq’'a’, keys %ary) is FALSE
See, the whole entry is gone!

Why don‘t my tied hashes make the defined/exists distinction?

They may or may not implement tB&XISTS() andDEFINED() methods differently. For example, there

isn‘t the concept of undef with hashes that are tied to DBM* files. This means the true/false tables above will
give different results when used on such a hash. It also means that exists and defined do the same thing with
a DBM* file, and what they end up doing is not what they do with ordinary hashes.

How do | reset an each() operation part-way through?

Using keys %hash in scalar context returns the number of keys in the l@mshresets the iterator
associated with the hash. You may need to do this if yolasse to exit a loop early so that when you
re—enter it, the hash iterator has been reset.

How can | get the unique keys from two hashes?
First you extract the keys from the hashes into arrays, and then solve the uniquifying the array problem
described above. For example:

%seen = ();
for $element (keys(%foo), keys(%bar)) {
$seen{$element}++;

}

@uniq = keys %seen;
Or more succinctly:

@uniq = keys %{{%fo0,%bar}};
Or if you really want to save space:

%seen = ();
while (defined ($key = each %fo0)) {
$seen{Skey}++;

}
while (defined ($key = each %bar)) {
$seen{Skey}++;
}
@uniq = keys %seen;
How can | store a multidimensional array in a DBM file?

Either stringify the structure yourself (no fun), or else get the MLDBM (which uses Data::Dumper) module
from CPAN and layer it on top of either DB_File or GDBM_File.

How can | make my hash remember the order | put elements into it?
Use the Tie::IxHash from CPAN.

use Tie::IxHash;

tie(%omyhash, Tie::IxHash);

for ($i=0; $i<20; $i++) {
$myhash{$i} = 2*$i;

}

@keys = keys %myhash;

@keys =(0,1,2,3,...)

Why does passing a subroutine an undefined element in a hash create it?
If you say something like:

somefunc($hash{"nonesuch key here"});

18-0Oct-1998 Version 5.005_02 61

perlfaq4 Perl Programmers Reference Guide perlfaq4

Then that element "autovivifies"; that is, it springs into existence whether you store something there or not.
That's because functions get scalars passed in by referersmmdfunc() modifies$_[0], it has to be
ready to write it back into the caller‘s version.

This has been fixed as of perl5.004.

Normally, merely accessing a key's value for a nonexistent keyragesuse that key to be forever there.
This is different than awk's behavior.
How can | make the Perl equivalent of a C structure/C++ class/hash or array of hashes or arrays?

Use references (documented parlref). Examples of complex data structures are givepenidsc and
perllol. Examples of structures and object-oriented classes peelioot

How can | use a reference as a hash key?
You can't do this directly, but you could use the standard Tie::Refhash module distributed with perl.
Data: Misc

How do | handle binary data correctly?

Perl is binary clean, so this shouldn‘t be a problem. For example, this works fine (assuming the files are
found):

if (‘cat /vmunix' =~ /gzip/) {
print "Your kernel is GNU-zip enabled!\n";
}

On some systems, however, you have to play tedious games with "text" versus "binary" files. See
binmode in perlfunc

If you‘re concerned about 8-bit ASCII data, then gedlocale

If you want to deal with multibyte characters, however, there are some gotchas. See the section on Regular
Expressions.
How do | determine whether a scalar is a number/whole/integer/float?

Assuming that you don‘t care about IEEE notations like "NaN" or "Infinity", you probably just want to use a
regular expression.

warn "has nondigits" if AD/;

warn "not a natural number" unless /M\d+$/; # rejects -3
warn "not an integer" unless /"=\d+$/; # rejects +3
warn "not an integer" unless /A\[+=]2\d+$/;

warn "not a decimal number" unless /*~-\d+\.2\d*$/; # rejects .2
warn "not a decimal number" unless /*=?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless /M([+=1?)(?=\d\.\d)\d*(\.\d*) ?([Ee]([+-]?\d+))?$/;

If you're on a POSIX system, Perl‘'s supports B@SIX::strtod function. Its semantics are somewhat
cumbersome, so here'ggatnum wrapper function for more convenient access. This function takes a string
and returns the number it found, wndef for input that isn‘t a C float. This_numeric function is a

front end togetnum if you just want to say, “Is this a float?”

sub getnum {

use POSIX qw(strtod);

my $str = shift;

$str =~ s/Ms+//;

$str =~ s/\s+$//;

$!'=0;

my($num, $unparsed) = strtod($str);

if ($streq ™) || (Bunparsed = 0) || $!) {
return undef;

62 Version 5.005_02 18-0Oct-1998

perlfaq4 Perl Programmers Reference Guide perlfaq4

}else {
return $num;

}
}

sub is_numeric { defined &getnum }

Or you could check out http://mww.perl.com/CPAN/modules/by—module/String/String—Scanf-1.1.tar.gz
instead. The POSIX module (part of the standard Perl distribution) providssttie andstrtod for
converting strings to double and longs, respectively.

How do | keep persistent data across program calls?
For some specific applications, you can use one of the DBM moduleangB8M_File More generically,
you should consult the FreezeThaw, Storable, or Class::Eroot modules from CPAN.

How do | print out or copy a recursive data structure?
The Data::Dumper module on CPAN is nice for printing out data structures, and FreezeThaw for copying
them. For example:

use FreezeThaw gw(freeze thaw);
$new = thaw freeze $old;

Where$old can be (a reference to) any kind of data structure you'd like. It will be deeply copied.

How do | define methods for every class/object?
Use the UNIVERSAL class (sé&NIVERSAIL.

How do | verify a credit card checksum?
Get the Business::CreditCard module from CPAN.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation whether
printed or otherwise, this work may be distributed only under the terms of Perl's Artistic License. Any
distribution of this file or derivatives thereofitsideof that package require that special arrangements be
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain. You
are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit would be courteous but is not required.

18-0Oct-1998 Version 5.005_02 63

perlfaq5 Perl Programmers Reference Guide perlfaq5

NAME

perlfag5 - Files and Format8Revision: 1.24%, $Date: 1998/07/05 15:07:29)

DESCRIPTION

This section deals with I/O and the "f* issues: filehandles, flushing, formats, and footers.

How do | flush/unbuffer an output filehandle? Why must | do this?

The C standard 1/O library (stdio) normally buffers characters sent to devices. This is done for efficiency
reasons, so that there isn‘t a system call for each byte. Any time yquinige or write() in Perl,
you go though this bufferingsyswrite() circumvents stdio and buffering.

In most stdio implementations, the type of output buffering and the size of the buffer varies according to the
type of device. Disk files are block buffered, often with a buffer size of more than 2k. Pipes and sockets are
often buffered with a buffer size between 1/2 and 2k. Serial devices (e.g. modems, terminals) are normally
line-buffered, and stdio sends the entire line when it gets the newline.

Perl does not support truly unbuffered output (except insofar as yaysamnte(OUT, $char, 1)).

What it does instead support is "command buffering”, in which a physical write is performed after every
output command. This isn‘t as hard on your system as unbuffering, but does get the output where you want
it when you want it.

If you expect characters to get to your device when you print them there, you'll want to autoflush its handle.
Useselect() and the$| variable to control autoflushing (ség¢ andselec):

$old_fh = select(OUTPUT_HANDLE);
$=1
select($old_th);

Or using the traditional idiom:
select((select(OUTPUT_HANDLE), $| = 1)[0]);

Or if don't mind slowly loading several thousand lines of module code just because you're afrai@|of the
variable:

use FileHandle;
open(DEV, "+</dev/tty"); # ceci n'est pas une pipe
DEV->autoflush(1);

or the newer 10::* modules:

use |0::Handle;
open(DEV, ">/dev/printer"); # but is this?
DEV->autoflush(1);

or even this:

use 10::Socket; # this one is kinda a pipe?

$sock = 10::Socket::INET->new(PeerAddr => 'www.perl.com’,
PeerPort => 'http(80)’,
Proto =>'tcp’);

die "$!" unless $sock;

$sock—>autoflush();

print $sock "GET / HTTP/1.0" . "\015\012" x 2;
$document = join(”, <$sock>);

print "DOC IS: $document\n”;

Note the bizarrely hardcoded carriage return and newline in their octal equivalents. This is the ONLY way
(currently) to assure a proper flush on all platforms, including Macintosh. That the way things work in
network programming: you really should specify the exact bit pattern on the network line terminator. In

64

Version 5.005_02 18-0Oct-1998

perlfaq5

Perl Programmers Reference Guide perlfaq5

practice,\n\n" often works, but this is not portable.

Seeperlfaq9for other examples of fetching URLs over the web.

How do | change one line in a file/delete a line in a file/insert a line in the middle of a file/append to
the beginning of a file?

Although humans have an easy time thinking of a text file as being a sequence of lines that operates much
like a stack of playing cards — or punch cards — computers usually see the text file as a sequence of bytes.
In general, there's no direct way for Perl to seek to a particular line of a file, insert text into a file, or remove

text from a file.

(There are exceptions in special circumstances. You can add or remove at the very end of the file. Another
is replacing a sequence of bytes with another sequence of the same length.

$DB_RECNG@rray bindings as documentedDB_File. Yet another is manipulating files with all lines the
same length.)

The general solution is to create a temporary copy of the text file with the changes you want, then copy that

over the original. This assumes no locking.

$old = $file;
$new = "$file.tmp.$$";
$bak = "$file.bak";

open(OLD, "< $old") or die "can’t open $old: $!";
open(NEW, "> $new") or die "can’t open $new: $!";

Correct typos, preserving case
while (<OLD>) {

s/\b(p)earl\b/${1}erl/i;

(print NEW $) or die "can't write to $new: $!";
}
close(OLD) or die "can’t close $old: $!";
close(NEW) or die "can't close $new: $!";
rename($old, $bak) or die "can't rename $old to $bak: $!";
rename($new, $old) or die "can’t rename $new to $old: $!";

Perl can do this sort of thing for you automatically with thecommand-line switch or the closely-related
$7 variable (se@erlrun for more details). Note thai may require a suffix on some non-Unix systems;
see the platform-specific documentation that came with your port.

If you need to seek to an arbitrary line of a file that changes infrequently, you could build up an index of byte
positions of where the line ends are in the file. If the file is large, an index of every tenth or hundredth line
end would allow you to seek and read fairly efficiently. If the file is sorted, try the look.pl library (part of the

Renumber a series of tests from the command line
perl —pi —e 's/(Ms+test\s+)\d+/ $1 . ++$count /e’ t/op/taint.t

form a script
local($"l, @ARGV) = (".bak’, glob("*.c"));

while (<>) {
if ($.==1){
print "This line should appear at the top of each file\n";
}
s/\b(p)earl\b/${1}erl/i; # Correct typos, preserving case
print;
close ARGV if eof; # Reset $.

}

standard perl distribution).

18-0Oct-1998 Version 5.005_02 65

Another is using the

perlfaq5 Perl Programmers Reference Guide perlfaq5

In the unique case of deleting lines at the end of a file, you catell@e andtruncate() . The
following code snippet deletes the last line of a file without making a copy or reading the whole file into
memory:

open (FH, "+< $file");
while (<FH>) { $addr = tell(FH) unless eof(FH) }
truncate(FH, $addr);

Error checking is left as an exercise for the reader.

How do | count the number of lines in a file?
One fairly efficient way is to count newlines in the file. The following program uses a feature of tr///, as
documented imperlop. If your text file doesn‘'t end with a newline, then it's not really a proper text file, so
this may report one fewer line than you expect.

$lines = 0;
open(FILE, $filename) or die "Can’t open ‘Sfilename’: $!";
while (sysread FILE, $buffer, 4096) {

$lines += ($buffer =~ trAn//);

}
close FILE;

This assumes no funny games with newline translations.

How do | make a temporary file name?

Use thenew_tmpfile class method from the 10::File module to get a filehandle opened for reading and
writing. Use this if you don‘t need to know the file's name.

use |O::File;
$fh = 10::File—>new_tmpfile()
or die "Unable to make new temporary file: $!";

Or you can use thienpnam function from the POSIX module to get a filename that you then open yourself.
Use this if you do need to know the file's name.

use Fentl;
use POSIX qw(tmpnam);

try new temporary filenames until we get one that didn't already
exist; the check should be unnecessary, but you can'’t be too careful
do { $name = tmpnam() }

until sysopen(FH, $name, O_RDWR|O_CREAT|O_EXCL);

install atexit—style handler so that when we exit or die,
we automatically delete this temporary file
END { unlink($name) or die "Couldn’t unlink $name : $!" }

now go on to use the file ...

If you're committed to doing this by hand, use the process ID and/or the current time-value. If you need to
have many temporary files in one process, use a counter:

BEGIN {

use Fentl;
my $temp_dir = —=d '/tmp’ ? '/tmp’ : SENV{TMP} || SENV{TEMP};
my $base_name = sprintf("%s/%d-%d—-0000", $temp_dir, $$, time());
sub temp_file {

local *FH;

my $count = 0;

until (defined(fileno(FH)) || $count++ > 100) {

$base_name =~ s/-(\d+)$/"-" . (1 + $1)/e;

66 Version 5.005_02 18-0Oct-1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

sysopen(FH, $base_name, O_WRONLY|O_EXCL|O_CREAT);
}
if (defined(fileno(FH))
return (*FH, $base_name);
}else {
return ();
}

}
}

How can | manipulate fixed—-record-length files?

The most efficient way is usingack() andunpack() . This is faster than usirgubstr() when take
many, many strings. It is slower for just a few.

Here is a sample chunk of code to break up and put back together again some fixed—format input lines, in
this case from the output of a normal, Berkeley-style ps:

sample input line:
15158 p5 T 0:00 perl /home/tchrist/scripts/now—what
$PS_T ="A6 A4 A7 A5 A%
open(PS, "ps|");
print scalar <PS>;
while (<PS>) {
($pid, $tt, $stat, $time, Scommand) = unpack($PS_T, $);
for $var (qw!pid tt stat time command!) {
print "$var: <$$var>\n";

}
print 'line=", pack($PS_T, $pid, $tt, $stat, $time, Scommand),
"“\n";
}
We've usedb$var in a way that forbidden hyse strict ‘refs’ . That is, we've promoted a string to

a scalar variable reference using symbolic references. This is ok in small programs, but doesn‘t scale well.
It also only works on global variables, not lexicals.

How can | make a filehandle local to a subroutine? How do | pass filehandles between
subroutines? How do | make an array of filehandles?

The fastest, simplest, and most direct way is to localize the typeglob of the filehandle in question:

local *TmpHandle;

Typeglobs are fast (especially compared with the alternatives) and reasonably easy to use, but they also have
one subtle drawback. If you had, for example, a function nafngoHandle() , or a variable named
%TmpHandle, you just hid it from yourself.

sub findme {
local *HostFile;
open(HostFile, "</etc/hosts") or die "no /etc/hosts: $!";
local $_; # <- VERY IMPORTANT
while (<HostFile>) {
print if Ab127\.(0\.0\.)?1\b/;
}

*HostFile automatically closes/disappears here

}

Here's how to use this in a loop to open and store a bunch of filehandles. We'll use as values of the hash an
ordered pair to make it easy to sort the hash in insertion order.

@names = qw(motd termcap passwd hosts);

18-0Oct-1998 Version 5.005_02 67

perlfaq5 Perl Programmers Reference Guide perlfaq5

my $i = 0;
foreach $filename (@names) {
local *FH;

open(FH, "/etc/$filename") || die "$filename: $!";
$file{$filename} = [$i++, *FH];
}

Using the filehandles in the array

foreach $name (sort { $file{$a}[0] <=> $file{$b}[0] } keys %file) {
my $fh = $file{$name}[1];
my $line = <$fh>;
print "$name $. $line";

}

For passing filehandles to functions, the easiest way is to prefer them with a star, as in func(*STDIN). See
Passing Filehandles in perlfad@r details.

If you want to create many, anonymous handles, you should check out the Symbol, FileHandle, or
IO0::Handle (etc.) modules. Here's the equivalent code with Symbol::gensym, which is reasonably
light-weight:

foreach $filename (@names) {
use Symbol;
my $fh = gensym();
open($fth, "/etc/$filename”) || die "open /etc/$filename: $!";
$file{$filename} = [$i++, $th];
}

Or here using the semi—object-oriented FileHandle, which certainly isn‘t light-weight:
use FileHandle;

foreach $filename (@names) {
my $fh = FileHandle->new("/etc/$filename") or die "$filename: $!";
$file{$filename} = [$i++, $th];

}

Please understand that whether the filehandle happens to be a (probably localized) typeglob or an anonymous
handle from one of the modules, in no way affects the bizarre rules for managing indirect handles. See the
next question.

How can | use a filehandle indirectly?
An indirect filehandle is using something other than a symbol in a place that a filehandle is expected. Here
are ways to get those:

$th = SOME_FH; # bareword is strict—subs hostile

$th = "SOME_FH"; # strict-refs hostile; same package only

$th = *SOME_FH,; # typeglob

$th = *SOME_FH,; # ref to typeglob (bless—-able)

$th = *SOME_FH({IO}; # blessed 10::Handle from *SOME_FH typeglob

Or to use thenew method from the FileHandle or 10 modules to create an anonymous filehandle, store that
in a scalar variable, and use it as though it were a normal filehandle.

use FileHandle;
$th = FileHandle—>new();

use 10::Handle; # 5.004 or higher
$th = 10::Handle—>new();

Then use any of those as you would a normal filehandle. Anywhere that Perl is expecting a filehandle, an

68 Version 5.005_02 18-0Oct-1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

indirect filehandle may be used instead. An indirect filehandle is just a scalar variable that contains a
filehandle. Functions likprint , open, seek , or the functions or theFH> diamond operator will accept
either a read filehandle or a scalar variable containing one:

(%ifh, $ofh, $efh) = (*STDIN, *STDOUT, *STDERR);
print $ofh "Type it: ";
$got = <$ifh>
print $efh "What was that: $got";
Of you're passing a filehandle to a function, you can write the function in two ways:

sub accept_fh {

my $fh = shift;

print $fh "Sending to indirect filehandle\n";
}

Or it can localize a typeglob and use the filehandle directly:

sub accept_fh {

local *FH = shift;

print FH "Sending to localized filehandle\n";
}

Both styles work with either objects or typeglobs of real filehandles. (They might also work with strings
under some circumstances, but this is risky.)

accept_fh(*STDOUT);
accept_fh($handle);

In the examples above, we assigned the filehandle to a scalar variable before using it. That is because only
simple scalar variables, not expressions or subscripts into hashes or arrays, can be used with built-ins like
print , printf , or the diamond operator. These are illegal and won'‘t even compile:

@fd = (*STDIN, *STDOUT, *STDERR);

print $fd[1] "Type it: *; # WRONG
$got = <$fd[0]> # WRONG
print $fd[2] "What was that: $got"; # WRONG

With print andprintf |, you get around this by using a block and an expression where you would place
the filehandle:

print { $fd[1] } "funny stuff\n";
printf { $fd[1] } "Pity the poor %x.\n", 3_735_928_559;
Pity the poor deadbeef.

That block is a proper block like any other, so you can put more complicated code there. This sends the
message out to one of two places:

$ok = —x "/bin/cat";
print { $ok ? $fd[1] : $fd[2] } "cat stat $ok\n";
print { $fd[1+ ($ok || 0)] } "cat stat $ok\n";

This approach of treatingrint and printf like object methods calls doesn‘t work for the diamond
operator. That's because it's a real operator, not just a function with a comma-less argument. Assuming
you'‘ve been storing typeglobs in your structure as we did above, you can use the built-in function named
readline to reads a record just & does. Given the initialization shown above for @fd, this would
work, but only becauseeadline() require a typeglob. It doesn‘t work with objects or strings, which
might be a bug we haven't fixed yet.

$got = readline($fd[0]);

Let it be noted that the flakiness of indirect filehandles is not related to whether they‘re strings, typeglobs,

18-0Oct-1998 Version 5.005_02 69

perlfaq5 Perl Programmers Reference Guide perlfaq5

objects, or anything else. It's the syntax of the fundamental operators. Playing the object game doesn't help
you at all here.

How can | set up a footer format to be used with write() ?
There's no builtin way to do this, bperlformhas a couple of techniques to make it possible for the intrepid
hacker.

How can | write() into a string?
Seeperlformfor answrite() function.

How can | output my numbers with commas added?
This one will do it for you:

sub commify {

local $_ = shift;
1 while s/A(-2\d+)(\d{3})/$1,$2/;
retun $_;

}
$n = 23659019423.2331;
print "GOT: ", commify($n), "\n";
GOT: 23,659,019,423.2331
You can't just:
siN=\d+)(\d{3})/$1,$2/g;
because you have to put the comma in and then recalculate your position.

Alternatively, this commifies all numbers in a line regardless of whether they have decimal portions, are
preceded by + or —, or whatever:

from Andrew Johnson <ajohnson@gpu.srv.ualberta.ca>
sub commify {

my $input = shift;

$input = reverse $input;

$input =~ s<(\d\d\d)(?=\d)(?"\d*\.)><$1,>g;

return reverse $input;

}

How can | translate tildes (~) in a filename?

Use the <x(glob()) operator, documented perifunc This requires that you have a shell installed that
groks tildes, meaning csh or tcsh or (some versions of) ksh, and thus may have portability problems. The
Glob::KGlob module (available from CPAN) gives more portable glob functionality.

Within Perl, you may use this directly:

$filename =~ s{

N~ # find a leading tilde
(# save this in $1
™ # a non-slash character
* #repeated O or more times (0 means me)
)
H
$1
? (getpwnam($1))[7]
: ($ENV{HOME} || $ENV{LOGDIR})
lex;

70 Version 5.005_02 18-0Oct-1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

How come when | open a file read—-write it wipes it out?
Because you're using something like this, which truncates the filthandives you read—write access:

open(FH, "+> /path/name"); # WRONG (almost always)

Whoops. You should instead use this, which will fail if the file doesn‘t exist. Using ">" always clobbers or
creates. Using "<" never does either. The "+" doesn‘t change this.

Here are examples of many kinds of file opens. Those agsupen() all assume
use Fentl;

To open file for reading:
open(FH, "< $path") || die $!;
sysopen(FH, $path, O_RDONLY) | die $!;

To open file for writing, create new file if needed or else truncate old file:
open(FH, "> $path") || die $!;
sysopen(FH, $path, O_WRONLY|O_TRUNC|O_CREAT) || die $!;
sysopen(FH, $path, O_ WRONLY|O_TRUNC|O_CREAT, 0666) || die $!;

To open file for writing, create new file, file must not exist:

sysopen(FH, $path, O_WRONLY|O_EXCL|O_CREAT) || die $!;
sysopen(FH, $path, O_WRONLY|O_EXCL|O_CREAT, 0666) || die $!;

To open file for appending, create if necessary:

open(FH, ">> $path”) || die $!;
sysopen(FH, $path, O_WRONLY|O_APPEND|O_CREAT) || die $;
sysopen(FH, $path, O_WRONLY|O_APPEND|O_CREAT, 0666) || die $!;

To open file for appending, file must exist:

sysopen(FH, $path, O_ WRONLY|O_APPEND) || die $!;
To open file for update, file must exist:

open(FH, "+< $path”) || die $!;

sysopen(FH, $path, O_RDWR) || die $!;
To open file for update, create file if necessary:

sysopen(FH, $path, O_RDWR|O_CREAT) | die $!;

sysopen(FH, $path, O_RDWR|O_CREAT, 0666) || die $!;
To open file for update, file must not exist:

sysopen(FH, $path, O_RDWR|O_EXCL|O_CREAT) || die $!;

sysopen(FH, $path, O_RDWR|O_EXCL|O_CREAT, 0666) || die $!;
To open a file without blocking, creating if necessary:

sysopen(FH, "/tmp/somefile”, O_WRONLY|O_NDELAY|O_CREAT)
or die "can’t open /tmp/somefile: $!":

Be warned that neither creation nor deletion of files is guaranteed to be an atomic operation over NFS. That
is, two processes might both successful create or unlink the same filel Therefore O_EXCL isn‘'t so exclusive
as you might wish.

Why do | sometimes get an "Argument list too long" when | use <*?

The<> operator performs a globbing operation (see above). By dgfablj forks csh(1) to do the actual
glob expansion, but csh can‘t handle more than 127 items and so gives the error Arggsagat list
too long . People who installed tcsh as csh won‘t have this problem, but their users may be surprised by

18-0Oct-1998 Version 5.005_02 71

perlfaq5 Perl Programmers Reference Guide perlfaq5

it.
To get around this, either do the glob yourself witimhandle s and patterns, or use a module like
Glob::KGlob, one that doesn't use the shell to do globbing.

Is there a leak/bug in glob() ?

Due to the current implementation on some operating systems, when you géebfhe function or its
angle-bracket alias in a scalar context, you may cause a leak and/or unpredictable behavior. It's best
therefore to usglob() only in list context.

How can | open a file with a leading ">" or trailing blanks?

Normally perl ignores trailing blanks in filenames, and interprets certain leading characters (or a trailing "|")
to mean something special. To avoid this, you might want to use a routine like this. It makes incomplete
pathnames into explicit relative ones, and tacks a trailing null byte on the name to make perl leave it alone:

sub safe_filename {

local $_ = shift;

return m#\#
?"$_\0"
D "I$\0Y

}

$fn = safe_filename("<<<something really wicked ");
open(FH, "> $fn") or "couldn’t open $fn: $!";

You could also use thgysopen() function (seeysopeh

How can | reliably rename a file?

Well, usually you just use Perltename() function. But that may not work everywhere, in particular,
renaming files across file systems. If your operating system supports a mv(1l) program or its moral
equivalent, this works:

rename($old, $new) or system("mv", $old, $new);

It may be more compelling to use the File::Copy module instead. You just copy to the new file to the new
name (checking return values), then delete the old one. This isn‘t really the same semantics as a real
rename() , though, which preserves metainformation like permissions, timestamps, inode info, etc.

The newer version of File::Copy exponreve() function.

How can | lock a file?

Perl's builtinflock() function (se@erlfuncfor details) will call flock(2) if that exists, fcntl(2) if it doesn't
(on perl version 5.004 and later), and lockf(3) if neither of the two previous system calls exists. On some
systems, it may even use a different form of native locking. Here are some gotchas wititoPlefi's :

1 Produces a fatal error if none of the three system calls (or their close equivalent) exists.

2 lockf(3) does not provide shared locking, and requires that the filehandle be open for writing (or
appending, or read/writing).

3 Some versions dfock() can't lock files over a network (e.g. on NFS file systems), so you'd need
to force the use of fcntl(2) when you build Perl. See the flock enpgrtfiing and thdNSTALL file
in the source distribution for information on building Perl to do this.

What can't | just open(FH, "file.lock™)?
A common bit of cod®&OT TO USE is this:

sleep(3) while —e "file.lock"; # PLEASE DO NOT USE
open(LCK, "> file.lock"); # THIS BROKEN CODE

This is a classic race condition: you take two steps to do something which must be done in one. That's why
computer hardware provides an atomic test—and-set instruction. In theory, this "ought" to work:

72 Version 5.005_02 18-0Oct-1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

sysopen(FH, "file.lock”, O_WRONLY|O_EXCL|O_CREAT)
or die "can’t open file.lock: $!":

except that lamentably, file creation (and deletion) is not atomic over NFS, so this won't work (at least, not
every time) over the net. Various schemes involving invollimg) have been suggested, but these tend
to involve busy-wait, which is also subdesirable.

| still don‘t get locking. | just want to increment the number in the file. How can | do this?

Didn‘t anyone ever tell you web—page hit counters were useless? They don‘t count number of hits, they‘re a
waste of time, and they serve only to stroke the writer's vanity. Better to pick a random number. It's more
realistic.

Anyway, this is what you can do if you can'‘t help yourself.

use Fentl;

sysopen(FH, "numfile”, O_RDWR|O_CREAT) or die "can’t open numfile: $!";
flock(FH, 2) or die "can’t flock numfile: $!";
$num = <FH> || 0;

seek(FH, 0, 0) or die "can't rewind numfile: $!";
truncate(FH, 0) or die "can't truncate numfile: $!";
(print FH $num+1, "\n") or die "can’t write numfile: $!";

DO NOT UNLOCK THIS UNTIL YOU CLOSE

close FH or die "can’t close numfile: $!";

Here's a much better web—page hit counter:
$hits = int((time() — 850_000_000) / rand(1_000));
If the count doesn't impress your friends, then the code might. :-)

How do | randomly update a binary file?
If you're just trying to patch a binary, in many cases something as simple as this works:

perl —i —pe 's{window manager{window mangler}g’ /usr/bin/emacs
However, if you have fixed sized records, then you might do something more like this:

$RECSIZE = 220; # size of record, in bytes

$recno = 37; # which record to update

open(FH, "+<somewhere") || die "can’t update somewhere: $!";

seek(FH, $recno * $RECSIZE, 0);

read(FH, $record, $SRECSIZE) == $RECSIZE || die "can't read record $recno: $!";
munge the record

seek(FH, $recno * $RECSIZE, 0);

print FH $record,;

close FH;

Locking and error checking are left as an exercise for the reader. Don‘t forget them, or you'll be quite sorry.

How do | get a file's timestamp in perl?
If you want to retrieve the time at which the file was last read, written, or had its meta—data (owner, etc)
changed, you use théM, —A, or—C filetest operations as documenteg@rlfunc These retrieve the age of
the file (measured against the start—time of your program) in days as a floating point number. To retrieve the
“raw" time in seconds since the epoch, you would call the stat function, thetoaademe() ,
gmtime() , or POSIX::strftime() to convert this into human-readable form.

Here's an example:

$write_secs = (stat($file))[9];
printf "file %s updated at %s\n", $file,
scalar localtime($write_secs);

18-0Oct-1998 Version 5.005_02 73

perlfaq5 Perl Programmers Reference Guide perlfaq5

If you prefer something more legible, use the File::stat module (part of the standard distribution in version
5.004 and later):

use File::stat;

use Time::localtime;

$date_string = ctime(stat($file)->mtime);
print "file $file updated at $date_string\n";

Error checking is left as an exercise for the reader.
How do | set a file's timestamp in perl?

You use thaitime() function documented intime By way of example, here's a little program that copies
the read and write times from its first argument to all the rest of them.

if (@ARGV < 2) {
die "usage: cptimes timestamp_file other_files ...\n";
}

$timestamp = shift;
($atime, $mtime) = (stat($timestamp))[8,9];
utime $atime, $mtime, @ARGV;

Error checking is left as an exercise for the reader.

Note thatutime() currently doesn‘'t work correctly with Win95/NT ports. A bug has been reported.
Check it carefully before using it on those platforms.

How do | print to more than one file at once?
If you only have to do this once, you can do this:

for $th (FH1, FH2, FH3) { print $fh "whatever\n" }

To connect up to one filehandle to several output filehandles, it's easiest to use the tee(1) program if you
have it, and let it take care of the multiplexing:

open (FH, "| tee filel file2 file3");

Or even:

make STDOUT go to three files, plus original STDOUT
open (STDOUT, "| tee filel file2 file3") or die "Teeing off: $\n";
print "whatever\n" or die "Writing: $1\n";
close(STDOUT) or die "Closing: $\n";

Otherwise you'll have to write your own multiplexing print function — or your own tee program — or use
Tom Christiansen's, at http://www.perl.com/CPAN/authors/id/TOMC/scripts/tct.gz, which is written in Perl
and offers much greater functionality than the stock version.

How can | read in a file by paragraphs?

Use the$\ variable (seeerlvar for details). You can either set it o to eliminate empty paragraphs

("abc\n\n\n\ndef" , for instance, gets treated as two paragraphs and not thrée)\ndr to accept
empty paragraphs.

How can | read a single character from a file? From the keyboard?

You can use the builtigetc() function for most filehandles, but it won't (easily) work on a terminal
device. For STDIN, either use the Term::ReadKey module from CPAN, or use the samplegside in

If your system supports POSIX, you can use the following code, which you'll note turns off echo processing
as well.

#!/usr/bin/perl —w
use strict;

$| =1,

74 Version 5.005_02 18-0Oct-1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

for (1..4) {
my $got;
print "gimme: ";
$got = getone();
print "—-—> $got\n";
} .
exit;
BEGIN {
use POSIX qw(:termios_h);

my ($term, $oterm, $echo, $noecho, $fd_stdin);
$fd_stdin = fileno(STDIN);

$term = POSIX:: Termios—>new();
$term—>getattr($fd_stdin);
$oterm = $term->getlflag();

$echo =ECHO | ECHOK | ICANON;
$noecho = $oterm & ~$echo;

sub cbreak {
$term->setlflag($noecho);
$term->setcc(VTIME, 1);
$term—>setattr($fd_stdin, TCSANOW);

}

sub cooked {
$term—>setlflag($oterm);
$term->setcc(VTIME, 0);
$term—>setattr($fd_stdin, TCSANOW);

}

sub getone {
my $key = ";
cbreak();
sysread(STDIN, $key, 1);
cooked();
return $key;

}
END { cooked() }

The Term::ReadKey module from CPAN may be easier to use:

use Term::ReadKey;

open(TTY, "</dev/tty");

print "Gimme a char: ";

ReadMode "raw";

$key = ReadKey 0, *TTY;

ReadMode "normal*;

printf "\nYou said %s, char number %03d\n",
$key, ord $key;

For DOS systems, Dan Carson <dbc@tc.fluke.COM reports the following:

To put the PC in "raw" mode, use ioctl with some magic numbers gleaned from msdos.c (Perl source file)
and Ralf Brown's interrupt list (comes across the net every so often):

18-0Oct-1998 Version 5.005_02 75

perlfaq5 Perl Programmers Reference Guide perlfaq5

$old_ioctl = ioctl(STDIN,0,0); # Gets device info
$old_ioctl &= Oxff;
ioctl(STDIN,1,$old_ioctl | 32); # Writes it back, setting bit 5

Then to read a single character:
sysread(STDIN,$c,1); # Read a single character
And to put the PC back to "cooked" mode:
ioctl(STDIN,1,%old_ioctl); # Sets it back to cooked mode.

So now you havéc. If ord($c) == , you have a two byte code, which means you hit a special key.
Read another byte withysread(STDIN,$c,1), and that value tells you what combination it was
according to this table:

PC 2-byte keycodes = *@ + the following:

#HEX KEYS
[—_——

#0F SHF TAB

#10-19 ALT QWERTYUIOP

#1E-26 ALT ASDFGHJKL

#2C-32 ALT ZXCVBNM

#3B-44 F1-F10

47-49 HOME,UP,PgUp

#4B LEFT

#4D RIGHT

4F-53 END,DOWN,PgDn,Ins,Del

#54-5D SHF F1-F10

#5E-67 CTR F1-F10

#68-71 ALT F1-F10

#73-77 CTR LEFT,RIGHT,END,PgDn,HOME
#78-83 ALT 1234567890-=

#84 CTR PgUp

This is all trial and error | did a long time ago, | hope I'm reading the file that worked.

How can | tell if there's a character waiting on a filehandle?

The very first thing you should do is look into getting the Term::ReadKey extension from CPAN. It now
even has limited support for closed, proprietary (read: not open systems, not POSIX, not Unix, etc) systems.

You should also check out the Frequently Asked Questions list in comp.unix.* for things like this: the
answer is essentially the same. It's very system dependent. Here's one solution that works on BSD systems:

sub key_ready {
my($rin, $nfd);
vec($rin, fileno(STDIN), 1) = 1;
return $nfd = select($rin,undef,undef,0);

}

If you want to find out how many characters are waiting, there's also the FIONREAD ioctl call to be looked
at.

The h2phtool that comes with Perl tries to convert C include files to Perl code, which caquiee d.
FIONREAD ends up defined as a function in $lys/ioctl.ptfile:
require 'sys/ioctl.ph’;

$size = pack("L", 0);
ioctl(FH, FIONREAD(), $size) or die "Couldn’t call ioctl: $1\n";
$size = unpack("L", $size);

76

Version 5.005_02 18-0Oct-1998

perlfaq5 Perl Programmers Reference Guide perlfaq5

If h2phwasn't installed or doesn't work for you, you qguep the include files by hand:

% grep FIONREAD /usr/include/*/*
lusr/include/asm/ioctls.h:#define FIONREAD 0x541B

Or write a small C program using the editor of champions:

% cat > fionread.c
#include <sys/ioctl.h>
main() {
printf("%#08x\n", FIONREAD);

}

D

% cc —o fionread fionread
% ./fionread

0x4004667f

And then hard-code it, leaving porting as an exercise to your successor.
$FIONREAD = 0x4004667f; # XXX: opsys dependent

$size = pack("L", 0);
ioctl(FH, $FIONREAD, $size) or die "Couldn’t call ioctl: $!\n";
$size = unpack('L", $size);

FIONREAD requires a filehandle connected to a stream, meaning sockets, pipes, and tty devices work, but
notfiles.

How do I do a tail —f in perl?
First try

seek(GWFILE, 0, 1);

The statemenseek(GWFILE, 0, 1) doesn't change the current position, but it does clear the
end-of-file condition on the handle, so that the next <GWFILE makes Perl try again to read something.

If that doesn't work (it relies on features of your stdio implementation), then you need something more like

this:
for (;;) {
for ($curpos = tell[GWFILE); <GWFILE>; $curpos = tel(GWFILE)) {
search for some stuff and put it into files
}
sleep for a while
seek(GWFILE, $curpos, 0); # seek to where we had been
}
If this still doesn‘t work, look into the POSIX module. POSIX definesdiearerr() method, which
can remove the end of file condition on a filehandle. The method: read until end dééikeyr() , read

some more. Lather, rinse, repeat.

How do | dup() a filehandle in Perl?
If you checkopen you'll see that several of the ways to @glen() should do the trick. For example:

open(LOG, ">>/tmp/logfile");
open(STDERR, ">&LOG");

Or even with a literal numeric descriptor:

$fd = SENV{MHCONTEXTFD},
open(MHCONTEXT, "<&=%$fd"); # like fdopen(3S)

Note that "&STDIN" makes a copy, but &STDIN" make an alias. That means if you close an aliased

18-0Oct-1998 Version 5.005_02 77

perlfaq5 Perl Programmers Reference Guide perlfaq5

handle, all aliases become inaccessible. This is not true with a copied one.
Error checking, as always, has been left as an exercise for the reader.

How do | close a file descriptor by number?

This should rarely be necessary, as the Blede() function is to be used for things that Perl opened
itself, even if it was a dup of a numeric descriptor, as with MHCONTEXT above. But if you really have to,
you may be able to do this:

require 'sys/syscall.ph’;
$rc = syscall(&SYS_close, $fd + 0); # must force numeric
die "can't sysclose $fd: $!" unless $rc == -1;

Why can‘t | use "C:\temp\foo" in DOS paths? What doesn‘t ‘C:\temp\foo.exe* work?

Whoops! You just put a tab and a formfeed into that filename! Remember that within double quoted strings
("like\this"), the backslash is an escape character. The full list of these is in

Quote and Quote-like Operatardnsurprisingly, you don‘t have a file called "c:(tab)emp(formfeed)oo" or
"c:(tab)emp(formfeed)oo.exe" on your DOS filesystem.

Either single—quote your strings, or (preferably) use forward slashes. Since all DOS and Windows versions
since something like MS-DOS 2.0 or so have treatatd\ the same in a path, you might as well use the

one that doesn‘t clash with Perl — or the POSIX shell, ANSI C and C++, awk, Tcl, Java, or Python, just to
mention a few.

Why doesn‘t glob("*.*") get all the files?
Because even on non-Unix ports, Perl‘'s glob function follows standard Unix globbing semantics. You'll
needglob("*") to get all (non—hidden) files. This malkgsb() portable.

Why does Perl let me delete read—only files? Why does —-i clobber protected files? Isn‘t this a
bug in Perl?
This is elaborately and painstakingly described in the "Far More Than You Ever Wanted To Know" in
http://www.perl.com/CPAN/doc/FMTEYEWTK/file-dir-perms .

The executive summary: learn how your filesystem works. The permissions on a file say what can happen to
the data in that file. The permissions on a directory say what can happen to the list of files in that directory.
If you delete a file, you're removing its name from the directory (so the operation depends on the
permissions of the directory, not of the file). If you try to write to the file, the permissions of the file govern
whether you‘re allowed to.

How do | select a random line from a file?
Here's an algorithm from the Camel Book:

srand;
rand($.) < 1 && ($line = $_) while <>;

This has a significant advantage in space over reading the whole file in. A simple proof by induction is
available upon request if you doubt its correctness.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.
When included as an integrated part of the Standard Distribution of Perl or of its documentation (printed or

otherwise), this works is covered under Perl‘'s Artistic Licence. For separate distributions of all or part of
this FAQ outside of that, seerlfag

Irrespective of its distribution, all code examples here are public domain. You are permitted and encouraged
to use this code and any derivatives thereof in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit to the FAQ would be courteous but is not required.

78 Version 5.005_02 18-0Oct-1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

NAME
perlfag6 — RegexpsbRevision: 1.22$, $Date: 1998/07/16 14:01:0%)
DESCRIPTION

This section is surprisingly small because the rest of the FAQ is littered with answers involving regular
expressions. For example, decoding a URL and checking whether something is a number are handled with
regular expressions, but those answers are found elsewhere in this document (in the section on Data and the
Networking one on networking, to be precise).

How can | hope to use regular expressions without creating illegible and unmaintainable code?
Three techniques can make regular expressions maintainable and understandable.

Comments Outside the Regexp
Describe what you‘re doing and how you‘re doing it, using normal Perl comments.

turn the line into the first word, a colon, and the

number of characters on the rest of the line

sIM\Ww+) () Ie($1) . " . length($2) /meg;
Comments Inside the Regexp

The/x modifier causes whitespace to be ignored in a regexp pattern (except in a character class), and
also allows you to use normal comments there, too. As you can imagine, whitespace and comments
help a lot.

/x lets you turn this:

s{<(Z:[*>"T" 2" *?)+>H}gs;

into this:
s{< # opening angle bracket
(2 # Non-backreffing grouping paren
[>"* # 0 or more things that are neither > nor ' nor "
| # orelse
" # a section between double quotes (stingy match)
| # orelse
LY # a section between single quotes (stingy match)
)+ # all occurring one or more times
> # closing angle bracket
H}osx; # replace with nothing, i.e. delete

It's still not quite so clear as prose, but it is very useful for describing the meaning of each part of the
pattern.

Different Delimiters

While we normally think of patterns as being delimited witlcharacters, they can be delimited by
almost any charactemerlre describes this. For example, th¢ above uses braces as delimiters.
Selecting another delimiter can avoid quoting the delimiter within the pattern:

s/\lusrVlocalNusr\/share/g; # bad delimiter choice
s#t/usr/local#/usr/share#g; # better

I'm having trouble matching over more than one line. What's wrong?
Either you don‘t have more than one line in the string you‘re looking at (probably), or else you aren't using
the correct modifier(s) on your pattern (possibly).

There are many ways to get multiline data into a string. If you want it to happen automatically while reading
input, you'll want to se$/ (probably to “ for paragraphs andef for the whole file) to allow you to read
more than one line at a time.

18-0Oct-1998 Version 5.005_02 79

perlfaq6 Perl Programmers Reference Guide perlfaq6

Readperlre to help you decide which d6 and/m (or both) you might want to usés allows dot to
include newline, andm allows caret and dollar to match next to a newline, not just at the end of the string.
You do need to make sure that you‘ve actually got a multiline string in there.

For example, this program detects duplicate words, even when they span line breaks (but not paragraph
ones). For this example, we don‘t néedbecause we aren‘t using dot in a regular expression that we want

to cross line boundaries. Neither do we nkedecause we aren‘t wanting caret or dollar to match at any
point inside the record next to newlines. But it's imperative #iabe set to something other than the
default, or else we won't actually ever have a multiline record read in.

$/=" # read in more whole paragraph, not just one line
while (<>) {
while (Ab([\w’'=]+)(\s+\1)+\b/gi) { # word starts alpha
print "Duplicate $1 at paragraph $.\n";
}
}

Here's code that finds sentences that begin with "From " (which would be mangled by many mailers):

$/=" # read in more whole paragraph, not just one line
while (<>) {
while (/AFrom /gm) { # /m makes * match next to \n
print "leading from in paragraph $.\n";
}
}

Here's code that finds everything between START and END in a paragraph:

undef $/; # read in whole file, not just one line or paragraph
while (<>) {
while (/START(.*?)END/sm) { # /s makes . cross line boundaries
print "$1\n";
}
}

How can | pull out lines between two patterns that are themselves on different lines?
You can use Perl's somewhat exatic operator (documented perlop):

perl —ne ’'print if /[START/ .. /JEND/ filel file2 ...
If you wanted text and not lines, you would use
perl —0777 —pe ’print "$1\n" while /START(.*?)END/gs’ filel file2 ...

But if you want nested occurrencesFARTthroughEND you'll run up against the problem described in
the question in this section on matching balanced text.

Here's another example of using:
while (<>) {
$in_header= 1 ../"$/;
$in_body =/"$/ .. eof();
now choose between them

} continue {
reset if eof(); # fix $.

}

| put a regular expression into $/ but it didn‘t work. What's wrong?
$/ must be a string, not a regular expression. Awk has to be better for something. :-)

Actually, you could do this if you don‘t mind reading the whole file into memory:

80 Version 5.005_02 18-0Oct-1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

undef $/;
@records = split /your_pattern/, <FH>;

The Net::Telnet module (available from CPAN) has the capability to wait for a pattern in the input stream, or
timeout if it doesn‘t appear within a certain time.

Create a file with three lines.

open FH, ">file";

print FH "The first line\nThe second line\nThe third line\n";
close FH;

Get a read/write filehandle to it.
$fh = new FileHandle "+<file";

Attach it to a "stream" object.
use Net::Telnet;
$file = new Net::Telnet (-fhopen => $fh);

Search for the second line and print out the third.
$file—>waitfor('/second line\n/’);
print $file—>getline;

How do | substitute case insensitively on the LHS, but preserving case on the RHS?

It depends on what you mean by "preserving case". The following script makes the substitution have the
same case, letter by letter, as the original. If the substitution has more characters than the string being
substituted, the case of the last character is used for the rest of the substitution.

Original by Nathan Torkington, massaged by Jeffrey Fried|

#
sub preserve_case($$)
{
my ($old, $new) = @_;
my ($state) = 0; # 0 = no change; 1 =Ic; 2 = uc
my ($i, $oldlen, $newlen, $c) = (0, length($old), length($new));
my ($len) = $oldlen < $newlen ? $oldlen : $newlen;
for ($i = 0; $i < $len; $i++) {
if ($¢ = substr($old, $i, 1), $¢ =~ /NAd_]/) {
$state = 0;
} elsif (Ic $c eq $c¢) {
substr($new, $i, 1) = Ic(substr($new, $i, 1));
$state = 1;
}else {
substr($new, $i, 1) = uc(substr($new, $i, 1));
$state = 2;
}
}
finish up with any remaining new (for when new is longer than old)
if ($newlen > $oldlen) {
if ($state == 1) {
substr($new, $oldlen) = Ic(substr($new, $oldlen));
} elsif ($state == 2) {
substr($new, $oldlen) = uc(substr($new, $oldlen));
}
}
return $new;
}

18-0Oct-1998 Version 5.005_02 81

perlfaq6 Perl Programmers Reference Guide perlfaq6

$a = "this is a TEST case";
$a =~ s/(test)/preserve_case($1, "success")/gie;
print "$a\n";

This prints:
this is a SUCCESS case

How can | make \w match national character sets?

Seeperllocale

How can | match a locale-smart version of /[a-zA-Z])/ ?

One alphabetic character would 8W\d_]/ , ho matter what locale you're in. Non-alphabetics would
be/[\W\d_]/ (assuming you don‘t consider an underscore a letter).

How can | quote a variable to use in a regexp?

The Perl parser will expanéivariable and @variable references in regular expressions unless the
delimiter is a single quote. Remember, too, that the right-hand sidg//éf asubstitution is considered a
double—quoted string (sgeerlop for more details). Remember also that any regexp special characters will
be acted on unless you precede the substitution with \Q. Here's an example:

$string = "to die?";
$lhs = "die?";
$rhs = "sleep no more";

$string =~ sAQ$lhs/$rhs/;
$string is now "to sleep no more"

Without the \Q, the regexp would also spuriously match "di".

What is /o really for?

Using a variable in a regular expression match forces a re—evaluation (and perhaps recompilation) each time
through. Thelo modifier locks in the regexp the first time it's used. This always happens in a constant
regular expression, and in fact, the pattern was compiled into the internal format at the same time your entire
program was.

Use of/o is irrelevant unless variable interpolation is used in the pattern, and if so, the regexp engine will
neither know nor care whether the variables change after the pattern is evaluagey fingttime.

/o is often used to gain an extra measure of efficiency by not performing subsequent evaluations when you
know it won't matter (because you know the variables won't change), or more rarely, when you don‘t want
the regexp to notice if they do.

For example, here's a "paragrep"” program:

$/ ="; # paragraph mode
$pat = shift;
while (<>) {
print if /$pat/o;
}

How do | use a regular expression to strip C style comments from a file?

While this actually can be done, it's much harder than you‘d think. For example, this one-liner
perl —0777 —pe 's{*.*?*/}{}gs’ foo.c

will work in many but not all cases. You see, it's too simple-minded for certain kinds of C programs, in
particular, those with what appear to be comments in quoted strings. For that, you'd need something like
this, created by Jeffrey Fried!:

$/ = undef;
$_ =<>;

82

Version 5.005_02 18-0Oct-1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

SHNT T+ (T COM WD OIS W[\)#$
print;

This could, of course, be more legibly written with themodifier, adding whitespace and comments.

Can | use Perl regular expressions to match balanced text?

Although Perl regular expressions are more powerful than "mathematical" regular expressions, because they
feature conveniences like backreferendgsgnd its ilk), they still aren‘t powerful enough. You still need to

use non-regexp techniques to parse balanced text, such as the text enclosed between matching parentheses or
braces, for example.

An elaborate subroutine (for 7-bit ASCII only) to pull out balanced and possibly nested single chars, like
and’ ,{ and}, or(and) can be found in
http://www.perl.com/CPAN/authors/id/TOMC/scripts/pull_quotes.gz .

The C::Scan module from CPAN contains such subs for internal usage, but they are undocumented.

What does it mean that regexps are greedy? How can | get around it?

Most people mean that greedy regexps match as much as they can. Technically speaking, it's actually the
quantifiers ?, *, +, {}) that are greedy rather than the whole pattern; Perl prefers local greed and immediate
gratification to overall greed. To get non—greedy versions of the same quantifief®? use,+?, {}?).

An example:

$s1 = $s2 ="l am very very cold";
$s1 =~s/ve*y//; #lam cold
$s2 =~ s/ve.*?y /l; #|am very cold

Notice how the second substitution stopped matching as soon as it encountered "y*? dumntifier
effectively tells the regular expression engine to find a match as quickly as possible and pass control on to
whatever is next in line, like you would if you were playing hot potato.

How do | process each word on each line?
Use the split function:

while (<>) {
foreach $word (split) {
do something with $word here
}
}

Note that this isn't really a word in the English sense; it's just chunks of consecutive non-whitespace
characters.

To work with only alphanumeric sequences, you might consider

while (<>) {
foreach $word (m/(\w+)/g) {
do something with $word here
}
}

How can | print out a word—frequency or line-frequency summary?
To do this, you have to parse out each word in the input stream. We'll pretend that by word you mean chunk
of alphabetics, hyphens, or apostrophes, rather than the non—-whitespace chunk idea of a word given in the
previous question:

while (<>) {
while (/(\b["W_\d][\w'-]+\b)/g) { # misses "'sheep™
$seen{$1}++;
}

18-0Oct-1998 Version 5.005_02 83

perlfaq6 Perl Programmers Reference Guide perlfaq6

while (($word, $count) = each %seen) {
print "$count $word\n";

}

If you wanted to do the same thing for lines, you wouldn‘t need a regular expression:

while (<>) {
$seen{$_}++;
}

while (($line, $count) = each %seen) {
print "$count $line";

}

If you want these output in a sorted order, see the section on Hashes.

How can | do approximate matching?
See the module String::Approx available from CPAN.

How do | efficiently match many regular expressions at once?
The following is super—inefficient:

while (<FH>) {
foreach $pat (@patterns) {
if (/$pat/) {
do something
}

}
}

Instead, you either need to use one of the experimental Regexp extension modules from CPAN (which might
well be overkill for your purposes), or else put together something like this, inspired from a routine in Jeffrey
Friedl's book:

sub _bm_build {
my $condition = shift;
my @regexp = @_; # this MUST not be local(); need my()
my $expr = join $condition => map { "mN\Sregexp[$_]/0" } (0..$#regexp);
my $match_func = eval "sub { $expr }";
die if $@; # propagate $@; this shouldn’t happen!
return $match_func;

}

sub bm_and { _bm_build(&&', @) }
sub bm_or {_bm_buildC|’, @_)}

$f1 = bm_and gw{

xterm
(?i)window
¥
$f2 = bm_or qw{
\b[Ff]ree\b
\bBSD\B

(?i)sys(tem)?\s*[V5]\b

feed me /etc/termcap, prolly
while (<>) {
print"1: $_" if &$f1;

84 Version 5.005_02 18-0Oct-1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

print"2: $_" if &$f2;
}

Why don‘t word-boundary searches with \b work for me?

Two common misconceptions are that is a synonym foks+ , and that it's the edge between whitespace
characters and non-whitespace characters. Neither is cdlre@.the place between\a character and a
\W character (that isb is the edge of a "word"). It's a zero—width assertion, justtik8, and all the
other anchors, so it doesn‘t consume any charactpesire describes the behaviour of all the regexp
metacharacters.

Here are examples of the incorrect applicatiobafwith fixes:

"two words" =~ /(\w+)\b(\w+)/; # WRONG

"two words" =~ /(\w+)\s+(\w+)/; # right

" =matchless= text" =~ \b=(\w+)=\b/; # WRONG

" =matchless= text" =~ /=(\w+)=/; # right
Although they may not do what you thought they thd,and\B can still be quite useful. For an example of
the correct use db , see the example of matching duplicate words over multiple lines.

An example of usindB is the patteriBis\B . This will find occurrences of "is" on the insides of words
only, as in "thistle”, but not "this" or “island".

Why does using $&, $, or $ slow my program down?

Because once Perl sees that you need one of these variables anywhere in the program, it has to provide them
on each and every pattern match. The same mechanism that handles these provides for fie &2 of

etc., so you pay the same price for each regexp that contains capturing parentheses. But if you$&ver use

etc., in your script, then regexpsthout capturing parentheses won'‘t be penalized. So #&jd$’, and

$' if you can, but if you can‘t (and some algorithms really appreciate them), once you‘ve used them once,
use them at will, because you‘ve already paid the price.

What good is \G in a regular expression?

The notation\G is used in a match or substitution in conjunction/themodifier (and ignored if there‘s no
/g) to anchor the regular expression to the point just past where the last match occurredpog() the
point.

For example, suppose you had a line of text quoted in standard mail and Usenet notation, (that is, with
leading> characters), and you want change each leasliimjo a corresponding. You could do so in this
way:

s/IN(>+)I"" x length($1)/gem;
Or, using\G, the much simpler (and faster):
sNG>/:/g;

A more sophisticated use might involve a tokenizer. The following lex—like example is courtesy of Jeffrey
Friedl. It did not work in 5.003 due to bugs in that release, but does work in 5.004 or better. (Note the use of
/c , which prevents a failed match with from resetting the search position back to the beginning of the
string.)

while (<>) {
chomp;
PARSER: {
m/\G(\d+\b)/gcx && do { print "number: $1\n"; redo; };
m/\G(\w+)/gcx && do { print "word: $1\n"; redo; };
m/\G(\s+)/gcx && do { print "space: $1\n"; redo; };
m/\G(["W\d]+)/gcx && do { print "other: $1\n"; redo; };

18-0Oct-1998 Version 5.005_02 85

perlfaq6 Perl Programmers Reference Guide perlfaq6

Of course, that could have been written as

while (<>) {
chomp;
PARSER: {
if (NG(\d+\b)/gex {
print "number: $1\n";
redo PARSER,;

}

if (NG(\Ww+)/gex {
print "word: $1\n";
redo PARSER,;

}

if (NG(\s+)lgex {
print "space: $1\n";
redo PARSER,;

}

if (AG([MWw\d]+)/gex {
print "other: $1\n";
redo PARSER,;

}
}

But then you lose the vertical alignment of the regular expressions.

Are Perl regexps DFAs or NFAs? Are they POSIX compliant?

While it's true that Perl's regular expressions resemble the DFAs (deterministic finite automata) of the
egrep(1l) program, they are in fact implemented as NFAs (non—-deterministic finite automata) to allow
backtracking and backreferencing. And they aren‘t POSIX-style either, because those guarantee worst-case
behavior for all cases. (It seems that some people prefer guarantees of consistency, even when what's
guaranteed is slowness.) See the book "Mastering Regular Expressions” (from O‘Reilly) by Jeffrey Fried|
for all the details you could ever hope to know on these matters (a full citation appeaitagD).

What's wrong with using grep or map in a void context?

Both grep and map build a return list, regardless of their context. This means you‘re making Perl go to the
trouble of building up a return list that you then just ignore. That's no way to treat a programming language,
you insensitive scoundrel!

How can | match strings with multibyte characters?

This is hard, and there's no good way. Perl does not directly support wide characters. It pretends that a byte
and a character are synonymous. The following set of approaches was offered by Jeffrey Friedl, whose
article in issue #5 of The Perl Journal talks about this very matter.

Let's suppose you have some weird Martian encoding where pairs of ASCIl uppercase letters encode single
Martian letters (i.e. the two bytes "CV" make a single Martian letter, as do the two bytes "SG", "VS", "XX",
etc.). Other bytes represent single characters, just like ASCII.

So, the string of Martian "I am CVSGXX!" uses 12 bytes to encode the nine characters ‘I', ’ *, ‘a‘, ‘m‘, " *
tCVi’ KSGt’ KXXL, 1!1.

Now, say you want to search for the single chard€®f . Perl doesn't know about Martian, so it'll find the
two bytes "GX" in the "l am CVSGXX!" string, even though that character isn‘t there: it just looks like it is
because "SG" is next to "XX", but there's no real "GX". This is a big problem.

Here are a few ways, all painful, to deal with it:

$martian =~ s/([A-Z][A-Z])/ $1 /g; # Make sure adjacent “martian” bytes
are no longer adjacent.

86

Version 5.005_02 18-0Oct-1998

perlfaq6 Perl Programmers Reference Guide perlfaq6

print "found GX\n" if $martian =~ /GX/;
Or like this:

@chars = $martian =~ m/([A-Z][A-Z]|[*A-Z])/g;
above is conceptually similar to: ~ @chars = $text =~ m/(.)/g;
#
foreach $char (@chars) {
print "found GX\n", last if $char eq 'GX’;

}
Or like this:
while ($martian =~ mAG([A-Z][A-Z]|.)/gs) { # \G probably unneeded
print "found GX\n", last if $1 eq 'GX’;
}

Or like this:
die "sorry, Perl doesn't (yet) have Martian support)—:\n";

In addition, a sample program which converts half-width to full-width katakana (in Shift-JIS or EUC
encoding) is available from CPAN as

=for Tom make it so

There are many double- (and multi-) byte encodings commonly used these days. Some versions of these
have 1-, 2-, 3-, and 4-byte characters, all mixed.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation whether
printed or otherwise, this work may be distributed only under the terms of Perl's Artistic License. Any
distribution of this file or derivatives thereofitsideof that package require that special arrangements be
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain. You
are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit would be courteous but is not required.

18-0Oct-1998 Version 5.005_02 87

perlfaq7 Perl Programmers Reference Guide perlfaq7

NAME
perlfaq7 — Perl Language Issu&Rgvision: 1.21$, $Date: 1998/06/22 15:20:0%)

DESCRIPTION
This section deals with general Perl language issues that don‘t clearly fit into any of the other sections.

Can | get a BNF/yacc/RE for the Perl language?
There is no BNF, but you can paw your way through the yacc grammar in perly.y in the source distribution if
you'‘re particularly brave. The grammar relies on very smart tokenizing code, so be prepared to venture into
toke.c as well.

In the words of Chaim Frenkel: "Perl's grammar can not be reduced to BNF. The work of parsing perl is
distributed between yacc, the lexer, smoke and mirrors."

What are all these $@%*punctuation signs, and how do | know when to use them?
They are type specifiers, as detaileghé@nldata

$ for scalar values (number, string or reference)

@ for arrays

% for hashes (associative arrays)

* for all types of that symbol name. In version 4 you used them like
pointers, but in modern perls you can just use references.

While there are a few places where you don‘t actually need these type specifiers, you should always use
them.

A couple of others that you're likely to encounter that aren‘t really type specifiers are:

<> are used for inputting a record from a filehandle.
\ takes a reference to something.

Note that <FILE> isneitherthe type specifier for files nor the name of the handle. It istheperator
applied to the handle FILE. It reads one line (well, record -$4¢é&om the handle FILE in scalar context,
or all lines in list context. When performing open, close, or any other operation besidediles, or even
talking about the handle, dwt use the brackets. These are correof(FH) , seek(FH, 0, 2) and
"copying from STDIN to FILE".

Do | always/never have to quote my strings or use semicolons and commas?
Normally, a bareword doesn‘t need to be quoted, but in most cases probably should be (and must be under
use strict). But a hash key consisting of a simple word (that isn‘t the name of a defined subroutine)
and the left—hand operand to the operator both count as though they were quoted:

This is like this
$foofline} $foof"line"}
bar => stuff "par" => stuff

The final semicolon in a block is optional, as is the final comma in a list. Good styleeftsgle says to
put them in except for one-liners:

if ($whoops) { exit 1}
@nums = (1, 2, 3);

if ($whoops) {
exit 1;
}
@lines = (
"There Beren came from mountains cold",
"And lost he wandered under leaves",

88 Version 5.005_02 18-0Oct-1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

How do | skip some return values?
One way is to treat the return values as a list and index into it:
$dir = (getpwnam($user))[7];
Another way is to use undef as an element on the left—-hand-side:
($dev, $ino, undef, undef, $uid, $gid) = stat($file);
How do | temporarily block warnings?
The$"Wvariable (documented jmerlvar) controls runtime warnings for a block:

{

local $"W = 0; # temporarily turn off warnings
$a = $b + $c; # | know these might be undef

}

Note that like all the punctuation variables, you cannot currentlynyée on$*"W, only local()

A newuse warnings pragma is in the works to provide finer control over all this. The curious should
check the perl5—porters mailing list archives for details.

What's an extension?
A way of calling compiled C code from Perl. Readipgrlxstutis a good place to learn more about
extensions.

Why do Perl operators have different precedence than C operators?

Actually, they don‘t. All C operators that Perl copies have the same precedence in Perl as they do in C. The
problem is with operators that C doesn‘t have, especially functions that give a list context to everything on
their right, eg print, chmod, exec, and so on. Such functions are called "list operators" and appear as such in
the precedence table prerlop.

A common mistake is to write:
unlink $file || die "snafu";
This gets interpreted as:
unlink ($file || die "snafu");
To avoid this problem, either put in extra parentheses or use the super low preocedepertor:

(unlink $file) || die "snafu";
unlink $file or die "snafu";

The "English" operatorsafd, or, xor , andnot) deliberately have precedence lower than that of list
operators for just such situations as the one above.

Another operator with surprising precedence is exponentiation. It binds more tightly even than unary minus,
making—2**2 product a negative not a positive four. It is also right—associating, meaniy*®t4p is
two raised to the ninth power, not eight squared.

Although it has the same precedence as in C, P&rl‘'sperator produces an Ivalue. This assi§xsto
either$a or $b, depending on the trueness$ofiaybe:

($maybe ? $a : $b) = $x;

How do | declare/create a structure?

In general, you don'‘t "declare" a structure. Just use a (probably anonymous) hash referepedretared
perldscfor details. Here's an example:

$person = {}; # new anonymous hash
$person->{AGE} = 24; # set field AGE to 24
$person->{NAME} = "Nat"; # set field NAME to "Nat"

18-0Oct-1998 Version 5.005_02 89

perlfaq7 Perl Programmers Reference Guide perlfaq7

If you‘re looking for something a bit more rigorous, prgritoot

How do | create a module?

A module is a package that lives in a file of the same name. For example, the Hello::There module would
live in Hello/There.pm. For details, repdrimod You'll also find Exporterhelpful. If you‘re writing a C
or mixed-language module with both C and Perl, then you should stubkgtut

Here's a convenient template you might wish you use when starting your own module. Make sure to change
the names appropriately.

package Some::Module; # assumes Some/Module.pm
use strict;

BEGIN {
use Exporter ();
use vars gwW($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);

set the version for version checking; uncomment to use
$VERSION =1.00;

if using RCS/CVS, this next line may be preferred,
but beware two—digit versions.
$VERSION = do{my@r=g$Revision: 1.21 $=~N\d+/g;sprintf '%d."."%02d'x$#r,@r};

@ISA = gw(Exporter);
@EXPORT = qgw(&funcl &func2 &func3);
%EXPORT_TAGS =(); # eg: TAG =>[gw!namel name?2!],

your exported package globals go here,
as well as any optionally exported functions
@EXPORT_OK = qgw($Varl %Hashit);

}
use vars @EXPORT_OK;

non—exported package globals go here
usevars qw(@more $stuff);

initialize package globals, first exported ones
$Varl ="
%Hashit = ();

then the others (which are still accessible as $Some::Module::stuff)
$stuff =",
@more = ();

all file—scoped lexicals must be created before
the functions below that use them.

file—private lexicals go here
my $priv_var =";
my %secret_hash = ();

here’s a file—private function as a closure,
callable as &$priv_func; it cannot be prototyped.
my $priv_func = sub {
stuff goes here.
¥
make all your functions, whether exported or not;
remember to put something interesting in the {} stubs
sub funcl {} # no prototype

90 Version 5.005_02 18-0Oct-1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

sub func2() {} # proto’d void
sub func3($$) {} # proto’d to 2 scalars

this one isn't exported, but could be called!
sub func4(\%) {} # proto’d to 1 hash ref

END {} # module clean—up code here (global destructor)
1; # modules must return true

How do | create a class?
Seeperltootfor an introduction to classes and objects, as weglkdsbjandperlbot

How can | tell if a variable is tainted?

Seelaundering and Detecting Tainted Data in perlsadere's an example (which doesn‘t use any system
calls, because thell() is given no processes to signal):

sub is_tainted {
return ! eval { join(",@_), kill 0; 1; };
}

This is not-w clean, however. There is rov clean way to detect taintedness — take this as a hint that you
should untaint all possibly-tainted data.

What's a closure?
Closures are documentedgarlref.

Closureis a computer science term with a precise but hard-to—explain meaning. Closures are implemented
in Perl as anonymous subroutines with lasting references to lexical variables outside their own scopes. These
lexicals magically refer to the variables that were around when the subroutine was defined (deep binding).

Closures make sense in any programming language where you can have the return value of a function be
itself a function, as you can in Perl. Note that some languages provide anonymous functions but are not
capable of providing proper closures; the Python language, for example. For more information on closures,

check out any textbook on functional programming. Scheme is a language that not only supports but

encourages closures.

Here's a classic function—generating function:

sub add_function_generator {
return sub { shift + shift };

}
$add_sub = add_function_generator();
$sum = $add_sub—>(4,5); # $sum is 9 now.

The closure works as fanction templatewith some customization slots left out to be filled later. The
anonymous subroutine returned &gyd_function_generator() isn‘t technically a closure because it
refers to no lexicals outside its own scope.

Contrast this with the followingnake_adder() function, in which the returned anonymous function
contains a reference to a lexical variable outside the scope of that function itself. Such a reference requires
that Perl return a proper closure, thus locking in for all time the value that the lexical had when the function
was created.

sub make_adder {

my $addpiece = shift;

return sub { shift + $addpiece };
}

$f1 = make_adder(20);
$f2 = make_adder(555);

18-0Oct-1998 Version 5.005_02 91

perlfaq7 Perl Programmers Reference Guide perlfaq7

Now &$f1($n) is always 20 plus whatevén you pass in, wherea&$f2($n) is always 555 plus
whatever$n you pass in. Th8addpiece in the closure sticks around.

Closures are often used for less esoteric purposes. For example, when you want to pass in a bit of code into
a function:

my $line;
timeout(30, sub { $line = <STDIN>});

If the code to execute had been passed in as a sgiimg, = <STDIN>’ , there would have been no
way for the hypotheticatimeout() function to access the lexical varialitne back in its caller's
scope.

What is variable suicide and how can | prevent it?

Variable suicide is when you (temporarily or permanently) lose the value of a variable. It is caused by
scoping throughmy() and local() interacting with either closures or aliasgmeach() interator
variables and subroutine arguments. It used to be easy to inadvertently lose a variable's value this way, but
now it's much harder. Take this code:

my $f = "foo";
sub T {
while ($i++ < 3) { my $f = $f; $f .= "bar"; print $f, "\n" }
}
T.

print "Finally $f\in";

The$f that has "bar" added to it three times should be a$fieqmy $f should create a new local variable
each time through the loop). Itisn‘t, however. This is a bug, and will be fixed.

How can | pass/return a {Function, FileHandle, Array, Hash, Method, Regexp}?

With the exception of regexps, you need to pass references to these objects. See
Pass by Reference in perlsidy this particular question, ameriref for information on references.
Passing Variables and Functions
Regular variables and functions are quite easy: just pass in a reference to an existing or anonymous
variable or function:
func(\$some_scalar);

func(\$some_array);
func([1..10]);

func(\%some_hash);
func({ this => 10, that=>20});

func(\&some_func);
func(sub {$_[0]1**$ _[1]});

Passing Filehandles

To pass filehandles to subroutines, use *fRe or *FH notations. These are "typeglobs" - see
Typeglobs and Filehandles in perldatad especiallfPass by Reference in perlsids more
information.

Here's an excerpt:

If you're passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references would be better because they'll still work properly wsderstrict
‘refs’ . For example:

splutter(*STDOUT);
sub splutter {
my $fh = shift;

92

Version 5.005_02 18-0Oct-1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

print $fh "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {

my $fh = shift;

return scalar <$fh>;

}

If you‘re planning on generating new filehandles, you could do this:

sub openit {
my $name = shift;
local *FH;
return open (FH, $path) ? *FH : undef;
}
$th = openit('< /etc/motd’);
print <$fh>;
Passing Regexps
To pass regexps around, you'll need to either use one of the highly experimental regular expression
modules from CPAN (Nick Ing—Simmons's Regexp or llya Zakharevich's Devel::Regexp), pass

around strings and use an exception—trapping eval, or else be be very, very clever. Here's an example
of how to pass in a string to be regexp compared:

sub compare($$) {
my ($vall, $regexp) = @_;
my $retval = eval { $val =~ /$regexp/ };
die if $@;
return $retval;

}
$match = compare("old McDonald", g/d.*D/);

Make sure you never say something like this:
return eval "\$val =~ /$regexp/"; # WRONG

or someone can sneak shell escapes into the regexp due to the double interpolation of the eval and the
double—quoted string. For example:

$pattern_of_evil = 'danger ${ system("rm —rf * &") } danger’;
eval "\$string =~ /$pattern_of_evil/";

Those preferring to be very, very clever might see the O'Reilly Hdaktering Regular Expressions
by Jeffrey Friedl. Page 273Build_MatchMany_Function() is particularly interesting. A
complete citation of this book is givenperlfaq2

Passing Methods
To pass an object method into a subroutine, you can do this:

call_a_lot(10, $some_obj, "methname")
sub call_a_lot {
my ($count, $widget, $trick) = @_;
for (my $i = 0; $i < $count; $i++) {
$widget—>$trick();
}
}

Or you can use a closure to bundle up the object and its method call and arguments:

18-0Oct-1998 Version 5.005_02 93

perlfaq7 Perl Programmers Reference Guide perlfaq7

my $whatnot = sub { $some_obj—>obfuscate(@args) };
func($whatnot);
sub func {
my $code = shift;
&S$code();
}

You could also investigate thman() method in the UNIVERSAL class (part of the standard perl
distribution).

How do | create a static variable?

As with most things in Perl, TMTOWTDI. What is a "static variable" in other languages could be either a
function—private variable (visible only within a single function, retaining its value between calls to that
function), or a file—private variable (visible only to functions within the file it was declared in) in Perl.

Here's code to implement a function—private variable:

BEGIN {
my $counter = 42;
sub prev_counter { return ——$counter }
sub next_counter { return $counter++ }

}

Now prev_counter() andnext_counter() share a private variabfounter that was initialized
at compile time.

To declare a file—private variable, you'll still userg() , putting it at the outer scope level at the top of the
file. Assume this is in file Pax.pm:

package Pax;
my $started = scalar(localtime(time()));

sub begun { return $started }

When use Pax or require Pax loads this module, the variable will be initialized. It won't get
garbage—collected the way most variables going out of scope do, becalsguh@ function cares about

it, but no one else can get it. It is not cakhx::started because its scope is unrelated to the package.

It's scoped to the file. You could conceivably have several packages in that same file all accessing the same
private variable, but another file with the same package couldn‘t get to it.

SeePeristent Private Variables in perlsidbr details.

What's the difference between dynamic and lexical (static) scoping? Between local() and
my() ?
local($x) saves away the old value of the global varidbie and assigns a new value for the duration
of the subroutinewhich is visible in other functions called from that subroutifiéis is done at run-time,
so is called dynamic scopindocal() always affects global variables, also called package variables or
dynamic variables.

my($x) creates a new variable that is only visible in the current subroutine. This is done at compile—time,
so is called lexical or static scopingay() always affects private variables, also called lexical variables or
(improperly) static(ly scoped) variables.

For instance:

sub visible {
print "var has value $var\n";

}

sub dynamic {
local $var ="local’; # new temporary value for the still-global
visible(); # variable called $var

94 Version 5.005_02 18-0Oct-1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

}

sub lexical {
my $var = 'private’; # new private variable, $var
visible(); # (invisible outside of sub scope)

}

$var = 'global’;

visible(); # prints global

dynamic(); # prints local

lexical(); # prints global

Notice how at no point does the value "private" get printed. That's be$aaseonly has that value within
the block of thdexical() function, and it is hidden from called subroutine.

In summarylocal() doesn't make what you think of as private, local variables. It gives a global variable
a temporary valuemy() is what you‘re looking for if you want private variables.

See'"Private Variables viany() " and"Temporary Values vidocal() " for excruciating details.

How can | access a dynamic variable while a similarly named lexical is in scope?

You can do this via symbolic references, provided you haventissestrict "refs" . So instead of
var, use{'var}.

local $var = "global";
my $var = "lexical";

print "lexical is $var\n”;

no strict 'refs’;
print "global is ${'var’\n";

If you know your package, you can just mention it explicitly, a$Some_Pack::var. Note that the
notation$::var is not the dynamicbvar in the current package, but rather the one imiben package,
as though you had writteé9main::var. Specifying the package directly makes you hard—code its name,

but it executes faster and avoids running afowlsef strict "refs"

What's the difference between deep and shallow binding?
In deep binding, lexical variables mentioned in anonymous subroutines are the same ones that were in scope
when the subroutine was created. In shallow binding, they are whichever variables with the same names
happen to be in scope when the subroutine is called. Perl always uses deep binding of lexical variables (i.e.,
those created withmy()). However, dynamic variables (aka global, local, or package variables) are
effectively shallowly bound. Consider this just one more reason not to use them. See the answer to
"What's a closure?"

Why doesn‘'t "my($foo) = <FILE;" work right?
my() andlocal() give list context to the right hand side-of The <FH> read operation, like so many of
Perl's functions and operators, can tell which context it was called in and behaves appropriately. In general,
thescalar() function can help. This function does nothing to the data itself (contrary to popular myth) but
rather tells its argument to behave in whatever its scalar fashion is. If that function doesn‘t have a defined
scalar behavior, this of course doesn‘t help you (such aswaitf)).

To enforce scalar context in this particular case, however, you need merely omit the parentheses:

local($foo) = <FILE>; # WRONG
local($foo) = scalar(<FILE>); # ok
local $foo = <FILE>; # right

You should probably be using lexical variables anyway, although the issue is the same here:

my($foo) = <FILE>; # WRONG

18-0Oct-1998 Version 5.005_02 95

perlfaq7 Perl Programmers Reference Guide perlfaq7

my $foo = <FILE>; # right

How do | redefine a builtin function, operator, or method?

Why do you want to do that? :-)

If you want to override a predefined function, suclopan() , then you'll have to import the new definition
from a different module. Se®verriding Builtin Functions in perlsub There's also an example in
Class:: Template in perltoot

If you want to overload a Perl operator, such+asr ** | then you'll want to use thase overload
pragma, documented averload

If you'‘re talking about obscuring method calls in parent classe§)waeidden Methods in perltoot

What's the difference between calling a function as &foo and foo() 7

When you call a function a&foo, you allow that function access to your current @_ values, and you
by—pass prototypes. That means that the function doesn‘t get an empty @_, it gets yours! While not strictly
speaking a bug (it's documented that waypéarlsulj, it would be hard to consider this a feature in most
cases.

When you call your function a&foo() , then youdo get a new @_, but prototyping is still circumvented.

Normally, you want to call a function usirigo() . You may only omit the parentheses if the function is
already known to the compiler because it already saw the definitg® put notrequire), or via a
forward reference anse subs declaration. Even in this case, you get a clean @_ without any of the old
values leaking through where they don‘t belong.

How do | create a switch or case statement?

This is explained in more depth in therlsyn Briefly, there's no official case statement, because of the
variety of tests possible in Perl (humeric comparison, string comparison, glob comparison, regexp matching,
overloaded comparisons, ...). Larry couldn‘t decide how best to do this, so he left it out, even though it's
been on the wish list since perl1.

The general answer is to write a construct like this:

for ($variable_to_test) {
if (/patl/) {} # do something
elsif (/pat2/) {} # do something else
elsif (/pat3/) {} # do something else
else {} # default

}

Here's a simple example of a switch based on pattern matching, this time lined up in a way to make it look
more like a switch statement. We'll do a multi-way conditional based on the type of reference stored in
$whatchamacallit:

SWITCH: for (ref $whatchamacallit) {

n$/ && die "not a reference”;
/SCALAR/ && do {
print_scalar($$ref);
last SWITCH;
b
/ARRAY/ && do {
print_array(@$%$ref);
last SWITCH;
b
/HASH/ && do {

print_hash(%$ref);

96

Version 5.005_02 18-0Oct-1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

last SWITCH,;
¥
/CODE/ && do {
warn "can't print function ref";
last SWITCH,;
¥
DEFAULT
warn "User defined type skipped";
}
Seeperlsyn/'Basic BLOCKs and Switch Statements" for many other examples in this style.

Sometimes you should change the positions of the constant and the variable. For example, let's say you
wanted to test which of many answers you were given, but in a case-insensitive way that also allows
abbreviations. You can use the following technique if the strings all start with different characters, or if you
want to arrange the matches so that one takes precedence over andtBENRS has precedence over
"STOP" here:

chomp($answer = <>);

if ("SEND" =~ /MQ$answer/i) { print "Action is send\n" }
elsif ("STOP" =~ /M\Q$answer/i) { print "Action is stop\n" }
elsif ("ABORT" =~ /MQ$answerl/i) { print "Action is abort\n" }
elsif ("LIST" =~ /MQ$answer/i) { print "Action is list\n" }
elsif ("EDIT" =~ /MQ$answerl/i) { print "Action is edit\n" }

A totally different approach is to create a hash of function references.

my %commands = (
"happy" => \&joy,
"sad", =>\&sullen,
"done" => sub { die "See ya!" },
"mad" =>\&angry,
)i
print "How are you? ";
chomp($string = <STDIN>);
if (Jcommands{$string}) {
$commands{$string}—>();
}else {
print "No such command: $string\n";

}
How can | catch accesses to undefined variables/functions/methods?
The AUTOLOAD method, discussed Awutoloading in perlsutand
AUTOLOAD: Proxy Methods in perltadets you capture calls to undefined functions and methods.

When it comes to undefined variables that would trigger a warning wgjgiou can use a handler to trap
the pseudo-signal WARN__like this:

$SIG{__WARN__}=sub{
for ($_[0]) { # voici un switch statement

/Use of uninitialized value/ && do {
promote warning to a fatal
die $_;

18-0Oct-1998 Version 5.005_02 97

perlfaq7 Perl Programmers Reference Guide perlfaq7

other warning cases to catch could go here;

warn $_;

}
¥
Why can‘t a method included in this same file be found?

Some possible reasons: your inheritance is getting confused, you've misspelled the method name, or the
object is of the wrong type. Check operltoot for details on these. You may also ysent
ref($object) to find out the clas$object was blessed into.

Another possible reason for problems is because you‘ve used the indirect object syrftad (@gru

"Samy") on a class name before Perl has seen that such a package exists. It's wisest to make sure your
packages are all defined before you start using them, which will be taken care of if you use the
statement instead oéquire . If not, make sure to use arrow notation (@gyu—>find("Samy"))

instead. Object notation is explainedoirlobj.

Make sure to read about creating modulgseiimodand the perils of indirect objects in
WARNING in perlobj

How can | find out my current package?
If you'‘re just a random program, you can do this to find out what the currently compiled package is:
my $packname = __ PACKAGE__;

But if you‘'re a method and you want to print an error message that includes the kind of object you were
called on (which is not necessarily the same as the one in which you were compiled):

sub amethod {
my $self = shift;
my $class = ref($self) || $self;
warn "called me from a $class object";

}

How can | comment out a large block of perl code?
Use embedded POD to discard it:

program is here

=for nobody
This paragraph is commented out

program continues
=begin comment text
all of this stuff

here will be ignored
by everyone

=end comment text
=cut

This can'‘t go just anywhere. You have to put a pod directive where the parser is expecting a new statement,
not just in the middle of an expression or some other arbitrary yacc grammar production.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation whether
printed or otherwise, this work may be distributed only under the terms of Perl's Artistic License. Any

98 Version 5.005_02 18-0Oct-1998

perlfaq7 Perl Programmers Reference Guide perlfaq7

distribution of this file or derivatives thereofitsideof that package require that special arrangements be
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain. You
are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit would be courteous but is not required.

18-0Oct-1998 Version 5.005_02 99

perlfaq8 Perl Programmers Reference Guide perlfaq8

NAME
perlfag8 — System InteractioBRevision: 1.26$%, $Date: 1998/08/05 12:20:28)

DESCRIPTION

This section of the Perl FAQ covers questions involving operating system interaction. This involves
interprocess communication (IPC), control over the user—interface (keyboard, screen and pointing devices),
and most anything else not related to data manipulation.

Read the FAQs and documentation specific to the port of perl to your operating systgmrliegs
perlplang ...). These should contain more detailed information on the vagaries of your perl.

How do I find out which operating system I'm running under?
The $"0O variable §O0SNAMEf you use English) contains the operating system that your perl binary was
built for.

How come exec() doesn'treturn?
Because that's what it does: it replaces your currently running program with a different one. If you want to
keep going (as is probably the case if you're asking this questiosysisen() instead.

How do | do fancy stuff with the keyboard/screen/mouse?

How you access/control keyboards, screens, and pointing devices ("mice") is system—-dependent. Try the
following modules:

Keyboard
Term::Cap Standard perl distribution
Term::ReadKey CPAN
Term::ReadLine::Gnu CPAN
Term::ReadLine::Perl CPAN
Term::Screen CPAN

Screen
Term::Cap Standard perl distribution
Curses CPAN
Term::ANSIColor CPAN

Mouse
Tk CPAN

Some of these specific cases are shown below.

How do | print something out in color?

In general, you don‘t, because you don‘t know whether the recipient has a color-aware display device. If
you know that they have an ANSI terminal that understands color, you can use the Term::ANSIColor module
from CPAN:

use Term::ANSIColor;
print color("red"), "Stop\n", color("reset");
print color("green"), "Go\n", color("reset");

Or like this:

use Term::ANSIColor gw(:constants);
print RED, "Stop\n", RESET;
print GREEN, "Go\n", RESET;

How do | read just one key without waiting for a return key?

Controlling input buffering is a remarkably system—dependent matter. If most systems, you can just use the
stty command as shown @etg but as you see, that's already getting you into portability snags.

100 Version 5.005_02 18-0Oct-1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

open(TTY, "+</dev/tty") or die "no tty: $!";

system "stty cbreak </dev/tty >/dev/tty 2>&1";
$key = getc(TTY); # perhaps this works

OR ELSE

sysread(TTY, $key, 1); # probably this does
system "stty —cbreak </dev/tty >/dev/tty 2>&1";

The Term::ReadKey module from CPAN offers an easy-to-use interface that should be more efficient than
shelling out testty for each key. It even includes limited support for Windows.

use Term::ReadKey;
ReadMode('cbreak’);
$key = ReadKey(0);

ReadMode(’'normal’);

However, that requires that you have a working C compiler and can use it to build and install a CPAN
module. Here's a solution using the standard POSIX module, which is already on your systems (assuming
your system supports POSIX).

use HotKey;
$key = readkey();

And here's the HotKey module, which hides the somewhat mystifying calls to manipulate the POSIX
termios structures.

HotKey.pm
package HotKey;

@ISA = qw(Exporter);
@EXPORT = gqw(cbreak cooked readkey);

use strict;
use POSIX qw(:termios_h);
my ($term, $oterm, $echo, $noecho, $fd_stdin);

$fd_stdin = fileno(STDIN);

$term = POSIX:: Termios—>new();
$term—>getattr($fd_stdin);

$oterm = $term—>getlflag();

$echo =ECHO | ECHOK | ICANON;
$noecho = $oterm & ~$echo;

sub cbreak {
$term—>setlflag($noecho); # ok, so i don’t want echo either
$term->setcc(VTIME, 1);
$term—>setattr($fd_stdin, TCSANOW);

}

sub cooked {
$term—>setlflag($oterm);
$term->setcc(VTIME, 0);
$term—>setattr($fd_stdin, TCSANOW);

}

sub readkey {
my $key = ";
cbreak();
sysread(STDIN, $key, 1);
cooked();
return $key;

18-0Oct-1998 Version 5.005_02 101

perlfaq8 Perl Programmers Reference Guide perlfaq8

}
END { cooked() }

1
How do | check whether input is ready on the keyboard?

The easiest way to do this is to read a key in nonblocking mode with the Term::ReadKey module from
CPAN, passing it an argument of —1 to indicate not to block:

use Term::ReadKey;
ReadMode('cbreak’);

if (defined ($char = ReadKey(-1))) {

input was waiting and it was $char
}else {

no input was waiting

}

ReadMode(’'normal’); # restore normal tty settings

How do | clear the screen?
If you only have to so infrequently, usgstem :

system("clear");

If you have to do this a lot, save the clear string so you can print it 100 times without calling a program 100
times:

$clear_string = ‘clear’;
print $clear_string;

If you're planning on doing other screen manipulations, like cursor positions, etc, you might wish to use
Term::Cap module:

use Term::Cap;
$terminal = Term::Cap—>Tgetent({OSPEED => 9600});
$clear_string = $terminal->Tputs(cl’);

How do | get the screen size?

If you have Term::ReadKey module installed from CPAN, you can use it to fetch the width and height in
characters and in pixels:

use Term::ReadKey;
($wchar, $hchar, $wpixels, $hpixels) = GetTerminalSize();

This is more portable than the réaetl | but not as illustrative:

require 'sys/ioctl.ph’;
die "no TIOCGWINSZ " unless defined &TIOCGWINSZ;
open(TTY, "+</dev/tty") or die "No tty: $!";
unless (ioctl(TTY, &TIOCGWINSZ, $winsize=")) {
die sprintf "$0: ioctl TIOCGWINSZ (%08x: $H)\n", &TIOCGWINSZ;
}
($row, $col, $xpixel, $ypixel) = unpack(’S4’, $winsize);
print "(row,col) = ($row,$col)";
print " (xpixel,ypixel) = ($xpixel, ypixel)" if $xpixel || $ypixel;
print "\n";

102 Version 5.005_02 18-0Oct-1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

How do | ask the user for a password?

(This question has nothing to do with the web. See a different FAQ for that.)

There's an example of this igrypt). First, you put the terminal into "no echo" mode, then just read the
password normally. You may do this with an old—sigiet!() function, POSIX terminal control (see
POSIX and Chapter 7 of the Camel), or a call todtte program, with varying degrees of portability.

You can also do this for most systems using the Term::ReadKey module from CPAN, which is easier to use
and in theory more portable.

use Term::ReadKey;

ReadMode('noecho’);
$password = ReadLine(0);

How do | read and write the serial port?

This depends on which operating system your program is running on. In the case of Unix, the serial ports
will be accessible through files in /dev; on other systems, the devices names will doubtless differ. Several
problem areas common to all device interaction are the following

lockfiles

Your system may use lockfiles to control multiple access. Make sure you follow the correct protocol.
Unpredictable behaviour can result from multiple processes reading from one device.

open mode
If you expect to use both read and write operations on the device, you'll have to open it for update (see
open in perlfundor details). You may wish to open it without running the risk of blocking by using
sysopen() andO_RDWR|O_NDELAY|O_NOCTTMm the Fcntl module (part of the standard perl
distribution). Seasysopen in perlfunfor more on this approach.

end of line
Some devices will be expecting a "\r" at the end of each line rather than a "\n". In some ports of perl,
"\r'" and "\n" are different from their usual (Unix) ASCII values of "\012" and "\015". You may have
to give the numeric values you want directly, using octal ("\015"), hex ("OxOD"), or as a
control-character specification ("\cM").

print DEV "atv1\012"; # wrong, for some devices
print DEV "atv1\015"; # right, for some devices

Even though with normal text files, a "\n" will do the trick, there is still no unified scheme for
terminating a line that is portable between Unix, DOS/Win, and Macintosh, except to terAlihate

line ends with "\015\012", and strip what you don‘t need from the output. This applies especially to
socket 1/0 and autoflushing, discussed next.

flushing output
If you expect characters to get to your device whenpyoni() them, you'll want to autoflush that
flehandle. You can usgelect() and the$| variable to control autoflushing (s@¢ andselec}:
$oldh = select(DEV);
$| =1,
select($oldh);

You'll also see code that does this without a temporary variable, as in
select((select(DEV), $| = 1)[0]);

Or if you don‘t mind pulling in a few thousand lines of code just because you're afraid of §little
variable:

use 10::Handle;
DEV->autoflush(1);

18-0Oct-1998 Version 5.005_02 103

perlfaq8 Perl Programmers Reference Guide perlfaq8

As mentioned in the previous item, this still doesn‘'t work when using socket 1/0 between Unix and
Macintosh. You'll need to hardcode your line terminators, in that case.

non-blocking input
If you are doing a blockingead() orsysread() , you'll have to arrange for an alarm handler to
provide a timeout (sealarm). If you have a non-blocking open, you'll likely have a non-blocking
read, which means you may have to use a 4s@lart() to determine whether 1/O is ready on that
device (seeselect in perlfunc

While trying to read from his caller—id box, the notorious Jamie Zawinski <jwz@netscape.com, after much
gnashing of teeth and fighting with sysread, sysopen, POSIX's tcgetattr business, and various other functions
that go bump in the night, finally came up with this:

sub open_modem {
use IPC::Openz;
my $stty = ‘/bin/stty —-g";
open2(*MODEM_IN, *MODEM_OUT, "cu -I$modem_device -s2400 2>&1");
starting cu hoses /dev/tty’s stty settings, even when it has
been opened on a pipe...
system("/bin/stty $stty");
$_=<MODEM_IN>;
chop;
if (Im/A"Connected/) {
print STDERR "$0: cu printed ‘$_’ instead of ‘Connected’\n";

}
}

How do | decode encrypted password files?
You spend lots and lots of money on dedicated hardware, but this is bound to get you talked about.

Seriously, you can'‘t if they are Unix password files — the Unix password system employs one-way
encryption. It's more like hashing than encryption. The best you can check is whether something else
hashes to the same string. You can‘t turn a hash back into the original string. Programs like Crack can
forcibly (and intelligently) try to guess passwords, but don‘t (can‘t) guarantee quick success.

If you‘re worried about users selecting bad passwords, you should proactively check when they try to change
their password (by modifying passwd(1), for example).

How do | start a process in the background?
You could use

system("cmd &")

or you could use fork as documenteddrk in perlfung with further examples iperlipc. Some things to be
aware of, if you're on a Unix-like system:

STDIN, STDOUT, and STDERR are shared

Both the main process and the backgrounded one (the "child" process) share the same STDIN,
STDOUT and STDERR filehandles. If both try to access them at once, strange things can happen.
You may want to close or reopen these for the child. You can get around thigpesiting a pipe
(seeopen in perlfungbut on some systems this means that the child process cannot outlive the parent.

Signals
You'll have to catch the SIGCHLD signal, and possibly SIGPIPE too. SIGCHLD is sent when the
backgrounded process finishes. SIGPIPE is sent when you write to a filehandle whose child process
has closed (an untrapped SIGPIPE can cause your program to silently die). This is not an issue with
system("cmd&”).

104 Version 5.005_02 18-0Oct-1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

Zombies
You have to be prepared to "reap" the child process when it finishes

$SIG{CHLD} = sub { wait };

See Signals in perlipcfor other examples of code to do this. Zombies are not an issue with
system("prog &").

How do | trap control characters/signals?

You don't actually "trap" a control character. Instead, that character generates a signal which is sent to your
terminal's currently foregrounded process group, which you then trap in your process. Signals are
documented irsignals in perlipand chapter 6 of the Camel.

Be warned that very few C libraries are re—entrant. Therefore, if you attemnt(@ in a handler that
got invoked during another stdio operation your internal structures will likely be in an inconsistent state, and
your program will dump core. You can sometimes avoid this by sgs\grite() instead oprint()

Unless you're exceedingly careful, the only safe things to do inside a signal handler are: set a variable and
exit. And in the first case, you should only set a variable in such a waydhliat() is not called (eg, by
setting a variable that already has a value).

For example:

$interrupted = 0; # to ensure it has a value
$SIG{INT} = sub {
$interrupted++;
syswrite(STDERR, "ouch\n", 5);

}

However, because syscalls restart by default, you'll find that if you're in a "slow" call, such as <FH>,
read() ,connect() ,orwait() ,thatthe only way to terminate them is by "longjumping" out; that is, by
raising an exception. See the time—out handler for a blo¢kioky) in Signals in perlipar chapter 6 of

the Camel.

How do | modify the shadow password file on a Unix system?

If perl was installed correctly, and your shadow library was written properlygetmv*() functions
described irperlfuncshould in theory provide (read-only) access to entries in the shadow password file. To
change the file, make a new shadow password file (the format varies from system to syst@amssvee)

for specifics) and use pwd_mkdb(8) to install it (peel_mkdb(5jor more details).

How do | set the time and date?

Assuming you're running under sufficient permissions, you should be able to set the system-wide date and
time by running the date(1) program. (There is no way to set the time and date on a per—process basis.) This
mechanism will work for Unix, MS—-DOS, Windows, and NT; the VMS equivalesg¢tigime

However, if all you want to do is change your timezone, you can probably get away with setting an
environment variable:

$ENV{TZ} = "MST7MDT"; # unixish
$ENV{'SYS$TIMEZONE_DIFFERENTIAL}="-5" # vms
system "trn comp.lang.perl.misc";

How can | sleep() or alarm() for under a second?

If you want finer granularity than the 1 second thatsleep() function provides, the easiest way is to use
the select() function as documented gelect in perlfunc If your system has itimers asgscall()
support, you can check out the old example in
http://www.perl.com/CPAN/doc/misc/ancient/tutorial/eg/itimers.pl .

18-0Oct-1998 Version 5.005_02 105

perlfaq8 Perl Programmers Reference Guide perlfaq8

How can | measure time under a second?
In general, you may not be able to. The Time::HiRes module (available from CPAN) provides this
functionality for some systems.

In general, you may not be able to. But if your system supports bosyghall() function in Perl as
well as a system call like gettimeofday(2), then you may be able to do something like this:
require 'sys/syscall.ph’;
$TIMEVAL_T ="LL";
$done = $start = pack($TIMEVAL_T, ());
syscall(&SYS_gettimeofday, $start, 0)) |= -1
or die "gettimeofday: $!";

BHHHHHHH
DO YOUR OPERATION HERE
BHHHHHHH

syscall(&SYS_gettimeofday, $done, 0) = -1
or die "gettimeofday: $!";

@start = unpack($TIMEVAL_T, $start);
@done = unpack($TIMEVAL_T, $done);

fix microseconds
for ($done[1], $start[1]) { $_ /= 1_000_000 }

$delta_time = sprintf "%.4f", ($done[0] + $done[1])

($start[€)] + $start[1]);

How can | do an atexit() or setjmp()/longjmp() ? (Exception handling)

Release 5 of Perl added the END block, which can be used to siraigzitf) . Each package's END
block is called when the program or thread endsifsdenodmanpage for more details).

For example, you can use this to make sure your filter program managed to finish its output without filling
up the disk:

END {
close(STDOUT) || die "stdout close failed: $!";

}

The END block isn‘t called when untrapped signals kill the program, though, so if you use END blocks you
should also use

use sigtrap qw(die normal-signals);

Perl's exception—handling mechanism isat@l() operator. You can usal() as setjmp andie()
as longjmp. For details of this, see the section on signals, especially the time—out handler for a blocking
flock() in Signals in perlipand chapter 6 of the Camel.

If exception handling is all you‘re interested in, try the exceptions.pl library (part of the standard perl
distribution).

If you want theatexit() syntax (and ammexit() as well), try the AtExit module available from
CPAN.

Why doesn‘t my sockets program work under System V (Solaris)? What does the error message
"Protocol not supported” mean?
Some Sys-V based systems, notably Solaris 2.X, redefined some of the standard socket constants. Since
these were constant across all architectures, they were often hardwired into perl code. The proper way to

106 Version 5.005_02 18-0Oct-1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

deal with this is to "use Socket" to get the correct values.
Note that even though SunOS and Solaris are binary compatible, these values are different. Go figure.

How can | call my system's unique C functions from Perl?

In most cases, you write an external module to do it — see the answer to "Where can | learn about linking C
with Perl? [h2xs, xsubpp]". However, if the function is a system call, and your system supports
syscall() , you can use the syscall function (documentgukitfung.

Remember to check the modules that came with your distribution, and CPAN as well - someone may
already have written a module to do it.

Where do | get the include files to do ioctl() or syscall() ?

Historically, these would be generated by the h2ph tool, part of the standard perl distribution. This program
converts cpp(1l) directives in C header files to files containing subroutine definitions, like

&SYS_getitimer, which you can use as arguments to your functions. It doesn't work perfectly, but it
usually gets most of the job done. Simple files Ekmo.h, syscall.h andsocket.hwere fine, but the hard

ones likeioctl.h nearly always need to hand—edited. Here's how to install the *.ph files:

1. become super-user
2. cd /usr/include
3. h2ph *.h */*h
If your system supports dynamic loading, for reasons of portability and sanity you probably ought to use

h2xs (also part of the standard perl distribution). This tool converts C header files to Perl extensions. See
perlxstutfor how to get started with h2xs.

If your system doesn‘t support dynamic loading, you still probably ought to use h2xperBestutand
ExtUtils::MakeMakerfor more information (in brief, just usaake perl instead of a plaimake to rebuild
perl with a new static extension).

Why do setuid perl scripts complain about kernel problems?
Some operating systems have bugs in the kernel that make setuid scripts inherently insecure. Perl gives you
a number of options (describedgdarlseg to work around such systems.

How can | open a pipe both to and from a command?

The IPC::Open2 module (part of the standard perl distribution) is an easy-to—use approach that internally
usespipe() , fork() , andexec() to do the job. Make sure you read the deadlock warnings in its
documentation, though (s#eC::Openl). See

Bidirectional Communication with Another Process in peripd

Bidirectional Communication with Yourself in perlipc

You may also use the IPC::Open3 module (part of the standard perl distribution), but be warned that it has a
different order of arguments from IPC::Open2 (§&&::Open3.
Why can‘t | get the output of a command with system() ?

You'‘re confusing the purpose efstem() and backticks (*). system() runs a command and returns
exit status information (as a 16 bit value: the low 7 bits are the signal the process died from, if any, and the
high 8 bits are the actual exit value). Backticks (*) run a command and return what it sent to STDOUT.

$exit_status = system("mail-users");
$output_string = ‘Is';

How can | capture STDERR from an external command?
There are three basic ways of running external commands:

system $cmd,; # using system()
$output = ‘$cmd’; # using backticks (%)
open (PIPE, "cmd [|"); # using open()

18-0Oct-1998 Version 5.005_02 107

perlfaq8 Perl Programmers Reference Guide perlfaq8

With system() , both STDOUT and STDERR will go the same place as the script's versions of these,
unless the command redirects them. Backticksogea() readonly the STDOUT of your command.

With any of these, you can change file descriptors before the call:
open(STDOUT, ">logfile");
system("Is");

or you can use Bourne shell file—descriptor redirection:

$output = ‘$cmd 2>some_file';
open (PIPE, "cmd 2>some_file |");

You can also use file—descriptor redirection to make STDERR a duplicate of STDOUT:

$output = ‘$cmd 2>&1";
open (PIPE, "cmd 2>&1 |");

Note that yowcannotsimply open STDERR to be a dup of STDOUT in your Perl program and avoid calling
the shell to do the redirection. This doesn‘t work:

open(STDERR, ">&STDOUT");
$alloutput = ‘cmd args'; # stderr still escapes

This fails because thepen() makes STDERR go to where STDOUT was going at the time of the
open() . The backticks then make STDOUT go to a string, but don‘t change STDERR (which still goes to
the old STDOUT).

Note that youmustuse Bourne shell (sh(1)) redirection syntax in backticks, not csh(1)! Details on why
Perl'ssystem() and backtick and pipe opens all use the Bourne shell are in
http://www.perl.com/CPAN/doc/FMTEYEWTK/versus/csh.whynot . To capture a command‘'s STDERR and

STDOUT together:
$output = ‘cmd 2>&15 # either with backticks
$pid = open(PH, "cmd 2>&1 |"); # or with an open pipe
while (<PH>) {} # plus aread

To capture a command‘s STDOUT but discard its STDERR:
$output = ‘cmd 2>/dev/null; # either with backticks
$pid = open(PH, "cmd 2>/dev/null |"); # or with an open pipe
while (<PH>) {} # plus aread

To capture a command‘s STDERR but discard its STDOUT:
$output = ‘cmd 2>&1 1>/dev/null’; # either with backticks
$pid = open(PH, "cmd 2>&1 1>/dev/null |"); # or with an open pipe
while (<PH>) {} # plus aread

To exchange a command‘'s STDOUT and STDERR in order to capture the STDERR but leave its STDOUT
to come out our old STDERR:

$output = ‘cmd 3>&1 1>&2 2>&3 3>&—; # either with backticks
$pid = open(PH, "cmd 3>&1 1>&2 2>&3 3>&—|");# or with an open pipe
while (<PH>) {} # plus aread

To read both a command’'s STDOUT and its STDERR separately, it's easiest and safest to redirect them
separately to files, and then read from those files when the program is done:

system("program args 1>/tmp/program.stdout 2>/tmp/program.stderr");

Ordering is important in all these examples. That's because the shell processes file descriptor redirections in
strictly left to right order.

108 Version 5.005_02 18-0Oct-1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

system("prog args 1>tmpfile 2>&1");
system("prog args 2>&1 1>tmpfile");

The first command sends both standard out and standard error to the temporary file. The second command
sends only the old standard output there, and the old standard error shows up on the old standard out.

Why doesn‘t open() return an error when a pipe open fails?

It does, but probably not how you expect it to. On systems that follow the stdaddjtexec()

paradigm (such as Unix), it works like thapen() causes &ork() . Inthe parentppen() returns with

the process ID of the child. The chéddec() s the command to be piped to/from. The parent can‘t know
whether theexec() was successful or not — all it can return is whethefdHd€) succeeded or not. To
find out if the command succeeded, you have to catch SIGCHLDOvaitf to get the exit status. You
should also catch SIGPIPE if you‘re writing to the child — you may not have found ocexe¢h@ failed

by the time you write. This is documentedgrlipc.

On systems that follow thepawn() paradigm,open() mightdo what you expect — unless perl uses a
shell to start your command. In this caseftr&()/exec() description still applies.
What's wrong with using backticks in a void context?

Strictly speaking, nothing. Stylistically speaking, it's not a good way to write maintainable code because
backticks have a (potentially humungous) return value, and you‘re ignoring it. It's may also not be very
efficient, because you have to read in all the lines of output, allocate memory for them, and then throw it
away. Too often people are lulled to writing:

‘cp file file.bak’;
And now they think "Hey, Il just always use backticks to run programs." Bad idea: backticks are for
capturing a program's output; tegstem() function is for running programs.
Consider this line:

‘cat /etc/termcap’;

You haven't assigned the output anywhere, so it just wastes memory (for a little while). Plus you forgot to
check$? to see whether the program even ran correctly. Even if you wrote

print ‘cat /etc/termcap’;
In most cases, this could and probably should be written as

system("cat /etc/termcap") ==
or die "cat program failed!";

Which will get the output quickly (as its generated, instead of only at the end) and also check the return
value.

system() also provides direct control over whether shell wildcard processing may take place, whereas
backticks do not.

How can | call backticks without shell processing?
This is a bit tricky. Instead of writing

@ok = ‘grep @opts '$search_string’ @filenames";
You have to do this:

my @ok = ();
if (open(GREP, "-|") {
while (<GREP>) {
chomp;
push(@ok, $_);

}
close GREP;

18-0Oct-1998 Version 5.005_02 109

perlfaq8 Perl Programmers Reference Guide perlfaq8

}else {
exec 'grep’, @opts, $search_string, @filenames;

}

Just as witlsystem() , no shell escapes happen when grec() a list.
There are more examples of tiiafe Pipe Opens in perlipc

Why can‘t my script read from STDIN after | gave it EOF (“D on Unix, *Z on MS-DOS)?

Because some stdio‘s set error and eof flags that need clearing. The POSIX moduleleefies$)
that you can use. That is the technically correct way to do it. Here are some less reliable workarounds:

1 Try keeping around the seekpointer and go there, like this:

$where = tell(LOG);
seek(LOG, $where, 0);

2 If that doesn't work, try seeking to a different part of the file and then back.

3 If that doesn‘t work, try seeking to a different part of the file, reading something, and then seeking
back.

4 If that doesn't work, give up on your stdio package and use sysread.

How can | convert my shell script to perl?

Learn Perl and rewrite it. Seriously, there's no simple converter. Things that are awkward to do in the shell
are easy to do in Perl, and this very awkwardness is what would make a shell-perl converter nigh—on
impossible to write. By rewriting it, you'll think about what you‘re really trying to do, and hopefully will
escape the shell's pipeline datastream paradigm, which while convenient for some matters, causes many
inefficiencies.

Can | use perl to run a telnet or ftp session?

Try the Net::FTP, TCP::Client, and Net::Telnet modules (available from CPAN).
http://www.perl.com/CPAN/scripts/netstuff/telnet.emul.shar will also help for emulating the telnet protocol,
but Net::Telnet is quite probably easier to use..

If all you want to do is pretend to be telnet but don't need the initial telnet handshaking, then the standard
dual-process approach will suffice:

use 10::Socket; # new in 5.004
$handle = |0::Socket::INET->new('www.perl.com:80’)
| die "can’t connect to port 80 on www.perl.com: $!";

$handle—>autoflush(1);
if (fork()) { # XXX: undef means failure

select($handle);

print while <STDIN>; # everything from stdin to socket
}else {

print while <$handle>; # everything from socket to stdout

close $handle;
exit;
How can | write expect in Perl?
Once upon a time, there was a library called chat2.pl (part of the standard perl distribution), which never

really got finished. If you find it somewhempn‘t use it These days, your best bet is to look at the Expect
module available from CPAN, which also requires two other modules from CPAN, 10::Pty and 10::Stty.

Is there a way to hide perl's command line from programs such as "ps"?

First of all note that if you‘re doing this for security reasons (to avoid people seeing passwords, for example)
then you should rewrite your program so that critical information is never given as an argument. Hiding the
arguments won'‘t make your program completely secure.

110 Version 5.005_02 18-0Oct-1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

To actually alter the visible command line, you can assign to the va®i@lde documented iperlvar. This
won't work on all operating systems, though. Daemon programs like sendmail place their state there, as in:

$0 = "orcus [accepting connections]";

I {changed directory, modified my environment} in a perl script. How come the change
disappeared when | exited the script? How do | get my changes to be visible?

Unix
In the strictest sense, it can‘t be done — the script executes as a different process from the shell it was
started from. Changes to a process are not reflected in its parent, only in its own children created after
the change. There is shell magic that may allow you to fakeevalf) ing the script's output in
your shell; check out the comp.unix.questions FAQ for details.

How do | close a process's filehandle without waiting for it to complete?

Assuming your system supports such things, just send an appropriate signal to the process (see
kill in perlfunc It's common to first send a TERM signal, wait a little bit, and then send a KILL signal to
finish it off.

How do | fork a daemon process?

If by daemon process you mean one that's detached (disassociated from its tty), then the following process is
reported to work on most Unixish systems. Non-Unix users should check their Your_OS::Process module
for other solutions.

° Open /devi/tty and use the the TIOCNOTTY ioctl on it. Bg@) for details. Or better yet, you can
just use thé*OSIX::setsid() function, so you don‘t have to worry about process groups.

° Change directory to /
° Reopen STDIN, STDOUT, and STDERR so they‘re not connected to the old tty.
° Background yourself like this:

fork && exit;

How do | make my program run with sh and csh?
See theeg/nih script (part of the perl source distribution).

How do I find out if I'm running interactively or not?
Good question. SometimesSTDIN and-t STDOUT can give clues, sometimes not.

if (-t STDIN && -t STDOUT) {
print "Now what? ";

}

On POSIX systems, you can test whether your own process group matches the current process group of your
controlling terminal as follows:

use POSIX qw/getpgrp tcgetpgrp/;
open(TTY, "/dev/tty") or die $!;
$tpgrp = tcgetpgrp(TTY);
$pgrp = getpgrp();
if ($tpgrp == $pgrp) {

print "foreground\n®;
}else {

print "background\n®;

}

How do | timeout a slow event?

Use thealarm() function, probably in conjunction with a signal handler, as docum&iggtils in perlipc
and chapter 6 of the Camel. You may instead use the more flexible Sys::AlarmCall module available from

18-0Oct-1998 Version 5.005_02 111

perlfaq8 Perl Programmers Reference Guide perlfaq8

CPAN.

How do | set CPU limits?
Use the BSD::Resource module from CPAN.

How do | avoid zombies on a Unix system?

Use the reaper code fro8ignals in perlipado callwait() when a SIGCHLD is received, or else use the
double—fork technique describedfork.

How do | use an SQL database?

There are a number of excellent interfaces to SQL databases. See the DBD::* modules available from
http://www.perl.com/CPAN/modules/dbperl/DBD . A lot of information on this can be found at
http://www.hermetica.com/technologia/perl/DBl/index.html .

How do | make a system() exit on control-C?

You can‘t. You need to imitate tteystem() call (seeperlipc for sample code) and then have a signal
handler for the INT signal that passes the signal on to the subprocess. Or you can check for it:

$rc = system($cmd);
if ($rc & 127) { die "signal death" }
How do | open a file without blocking?
If you‘re lucky enough to be using a system that supports non—blocking reads (most Unixish systems do),
you need only to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction with
sysopen()
use Fentl;

sysopen(FH, "/tmp/somefile”, O_WRONLY|O_NDELAY|O_CREAT, 0644)
or die "can’t open /tmp/somefile: $!":

How do | install a CPAN module?

The easiest way is to have the CPAN module do it for you. This module comes with perl version 5.004 and
later. To manually install the CPAN module, or any well-behaved CPAN module for that matter, follow
these steps:

1 Unpack the source into a temporary area.

2
perl Makefile.PL
3
make
4
make test
5
make install

If your version of perl is compiled without dynamic loading, then you just need to replace siee (
with make perl and you will get a neywerl binary with your extension linked in.

SeeExtUtils::MakeMakerfor more details on building extensions. See also the next question.

What's the difference between require and use?

Perl offers several different ways to include code from one file into another. Here are the deltas between the
various inclusion constructs:

1) do $file is like eval ‘cat $file*, except the former:
1.1: searches @INC and updates %INC.
1.2: bequeaths an *unrelated* lexical scope on the eval’ed code.

112 Version 5.005_02 18-0Oct-1998

perlfaq8 Perl Programmers Reference Guide perlfaq8

2) require $file is like do $file, except the former:
2.1: checks for redundant loading, skipping already loaded files.
2.2: raises an exception on failure to find, compile, or execute $file.

3) require Module is like require "Module.pm", except the former:

3.1: translates each "::" into your system’s directory separator.
3.2: primes the parser to disambiguate class Module as an indirect object.

4) use Module is like require Module, except the former:
4.1: loads the module at compile time, not run—time.
4.2: imports symbols and semantics from that package to the current one.

In general, you usually wanse and a proper Perl module.

How do | keep my own module/library directory?
When you build modules, use the PREFIX option when generating Makefiles:

perl Makefile.PL PREFIX=/u/mydir/perl

then either set the PERL5LIB environment variable before you run scripts that use the modules/libraries (see
perlrun) or say

use lib 'fu/mydir/perl’;
See Perl'dib for more information.

How do | add the directory my program lives in to the module/library search path?
use FindBin;
use lib "$FindBin::Bin";
use your_own_modules;

How do | add a directory to my include path at runtime?
Here are the suggested ways of modifying your include path:

the PERLLIB environment variable
the PERL5LIB environment variable
the perl —Idir commpand line flag
the use lib pragma, as in
use lib "SENV{HOME}/myown_perllib";

The latter is particularly useful because it knows about machine dependent architectures. The lib.pm
pragmatic module was first included with the 5.002 release of Perl.

AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.

When included as part of the Standard Version of Perl, or as part of its complete documentation whether
printed or otherwise, this work may be distributed only under the terms of Perl's Artistic License. Any
distribution of this file or derivatives thereofitsideof that package require that special arrangements be
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain. You
are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit would be courteous but is not required.

18-0Oct-1998 Version 5.005_02 113

perlfaq9 Perl Programmers Reference Guide perlfaq9

NAME
perlfag9 — Networking§Revision: 1.20$, $Date: 1998/06/22 18:31:09)

DESCRIPTION
This section deals with questions related to networking, the internet, and a few on the web.

My CGI script runs from the command line but not the browser. (500 Server Error)
If you can demonstrate that you‘'ve read the following FAQs and that your problem isn‘t something simple
that can be easily answered, you'll probably receive a courteous and useful reply to your question if you post
it on comp.infosystems.www.authoring.cgi (if it's something to do with HTTP, HTML, or the CGI

protocols). Questions that appear to be Perl questions but are really CGl ones that are posted to
comp.lang.perl.misc may not be so well received.

The useful FAQs and related documents are:

CGI FAQ
http://www.webthing.com/page.cgi/cgifaq

Web FAQ
http://www.boutell.com/fag/

WWW Security FAQ
http://www.w3.org/Security/Fag/

HTTP Spec
http://www.w3.org/pub/WWW/Protocols/HTTP/

HTML Spec
http://www.w3.0rg/TR/REC-html40/
http://www.w3.org/pub/WWW/MarkUp/

CGl Spec
http://www.w3.0rg/CGl/

CGlI Security FAQ
http://www.go2net.com/people/paulp/cgi—security/safe—cgi.txt

How can | get better error messages from a CGI program?

Use the CGI::Carp module. It replacearn anddie , plus the normal Carp modulearp , croak , and
confess functions with more verbose and safer versions. It still sends them to the normal server error log.

use CGl::Carp;
warn "This is a complaint”;
die "But this one is serious";

The following use of CGl::Carp also redirects errors to a file of your choice, placed in a BEGIN block to
catch compile—time warnings as well:

BEGIN {
use CGl::Carp gw(carpout);
open(LOG, ">>/var/local/cgi-logs/mycgi-log")
or die "Unable to append to mycgi-log: $1\n";
carpout(*LOG);
}

You can even arrange for fatal errors to go back to the client browser, which is nice for your own debugging,
but might confuse the end user.

use CGl::Carp qw(fatalsToBrowser);
die "Bad error here";

114 Version 5.005_02 18-0Oct-1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

Even if the error happens before you get the HTTP header out, the module will try to take care of this to
avoid the dreaded server 500 errors. Normal warnings still go out to the server error log (or wherever you‘ve
sent them witltarpout) with the application name and date stamp prepended.

How do | remove HTML from a string?
The most correct way (albeit not the fastest) is to use HTML::Parse from CPAN (part of the libwww-perl
distribution, which is a must—-have module for all web hackers).

Many folks attempt a simple—minded regular expression approacls/dike>//g , but that fails in many
cases because the tags may continue over line breaks, they may contain quoted angle-brackets, or HTML
comment may be present. Plus folks forget to convert entitie®llike for example.

Here's one "simple—-minded" approach, that works for most files:
#!/usr/bin/perl —p0777
sI<(?2:M>"TF () - *2\1)*>/gs
If you want a more complete solution, see the 3—stage striphtml program in
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/striphtml.gz .
Here are some tricky cases that you should think about when picking a solution:
 B">

<IMG SRC = "fo0.gif"
ALT ="A>B">

<I-- <A comment> —-—>
<script>if (a<b && a>c)</script>
<# Just data #>
<I[INCLUDE CDATA [>>>>>>>>>>>> ||>
If HTML comments include other tags, those solutions would also break on text like this:

<!—-— This section commented out.
You can't see me!
——>

How do | extract URLS?
A quick but imperfect approach is

#!/usr/bin/perl -n00
gxurl — tchrist@perl.com
print "$2\n" while m{
<\s*
A\s+ HREF \s* =\s* ([""]) (.*?) \1
\s* >
}gsix;

This version does not adjust relative URLS, understand alternate bases, deal with HTML comments, deal
with HREF and NAME attributes in the same tag, or accept URLs themselves as arguments. It also runs
about 100x faster than a more "complete" solution using the LWP suite of modules, such as the
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/xurl.gz program.

How do | download a file from the user's machine? How do | open a file on another machine?

In the context of an HTML form, you can use what's knownmastipart/form—data encoding. The
CGl.pm module (available from CPAN) supports this ingtaet_multipart_form() method, which
isn‘t the same as thetartform() method.

18-0Oct-1998 Version 5.005_02 115

perlfaq9 Perl Programmers Reference Guide perlfaq9

How do | make a pop—up menu in HTML?

Use the<SELECT> and <OPTION> tags. The CGl.pm module (available from CPAN) supports this
widget, as well as many others, including some that it cleverly synthesizes on its own.

How do | fetch an HTML file?
One approach, if you have the lynx text-based HTML browser installed on your system, is this:

$html_code = ‘lynx —source $url’;
$text_data = ‘lynx —dump $url;

The libwww-perl (LWP) modules from CPAN provide a more powerful way to do this. They work through
proxies, and don‘t require lynx:

simplest version
use LWP::Simple;
$content = get(SURL);

or print HTML from a URL
use LWP::Simple;
getprint "http://www.sn.no/libwww-perl/";

or print ASCII from HTML from a URL
use LWP::Simple;
use HTML::Parse;
use HTML::FormatText;
my ($html, $ascii);
$html = get("http://www.perl.com/");
defined $html
or die "Can’t fetch HTML from http://www.perl.com/";
$ascii = HTML::FormatText—>new—->format(parse_html($html));
print $ascii;
How do | automate an HTML form submission?
If you're submitting values using the GET method, create a URL and encode the form using the
query_form method:

use LWP::Simple;

use URI::URL;

my $url = url(http://www.perl.com/cgi—-bin/cpan_mod’);
$url->query_form(module =>'DB_File’, readme => 1);
$content = get($url);

If you‘re using the POST method, create your own user agent and encode the content appropriately.

use HTTP::Request::Common qw(POST);
use LWP::UserAgent;

$ua = LWP::UserAgent—>new();
my $req = POST ’http://www.perl.com/cgi—bin/cpan_mod’,
[module =>'DB_File’, readme =>11];
$content = $ua—>request($req)—>as_string;
How do | decode or create those %—-encodings on the web?
Here's an example of decoding:

$string = "http://altavista.digital.com/cgi—bin/query?pg=q&what=news&fmt=.&q=%2Bc
$string =~ s/%([a—fA-F0-9]{2})/chr(hex($1))/ge;

Encoding is a bit harder, because you can't just blindly change all the non—-alphanumunder chidfacter (
into their hex escapes. It's important that characters with special meaning dikd? not be translated.

116 Version 5.005_02 18-0Oct-1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

Probably the easiest way to get this right is to avoid reinventing the wheel and just use the URI::Escape
module, which is part of the libwww—-perl package (LWP) available from CPAN.

How do | redirect to another page?

Instead of sending backGontent-Type as the headers of your reply, send batleation: header.
Officially this should be &RI: header, so the CGl.pm module (available from CPAN) sends back both:

Location: http://www.domain.com/newpage
URI: http://www.domain.com/newpage

Note that relative URLSs in these headers can cause strange effects because of "optimizations" that servers do.

$url = "http://mwww.perl.com/CPAN/";
print "Location: $url\n\n";
exit;

To be correct to the spec, each of theg should really each b&015\012" |, but unless you‘re stuck
on MacOS, you probably won‘t notice.

How do | put a password on my web pages?

That depends. You'll need to read the documentation for your web server, or perhaps check some of the
other FAQs referenced above.

How do | edit my .htpasswd and .htgroup files with Perl?

The HTTPD::UserAdmin and HTTPD::GroupAdmin modules provide a consistent OO interface to these
files, regardless of how they‘re stored. Databases may be text, dom, Berkley DB or any database with a DBI
compatible driver. HTTPD::UserAdmin supports files used by the ‘Basic’ and ‘Digest’ authentication
schemes. Here's an example:

use HTTPD::UserAdmin ();
HTTPD::UserAdmin
—>new(DB => "/foo/.htpasswd")
—>add($username => $password);

How do | make sure users can't enter values into a form that cause my CGI script to do bad
things?
Read the CGI security FAQ, at http://www-genome.wi.mit.edu/WWW/fagqs/www-security—faq.html, and
the Perl/CGI FAQ at http://www.perl.com/CPAN/doc/FAQs/cgi/perl-cgi—faq.html.

In brief: use tainting (segerlsed, which makes sure that data from outside your script (eg, CGl parameters)
are never used iaval or system calls. In addition to tainting, never use the single—argument form of
system() or exec() . Instead, supply the command and arguments as a list, which prevents shell
globbing.

How do | parse a mail header?
For a quick—and—dirty solution, try this solution derived from page 222 of the 2nd edition of "Programming

Perl":
$/=",
$header = <MSG>;
$header =~ s\n\s+/ /g; # merge continuation lines

%head = (UNIX_FROM_LINE, split /*([-\w]+):\s*/m, $header);

That solution doesn‘'t do well if, for example, you‘re trying to maintain all the Received lines. A more
complete approach is to use the Mail::Header module from CPAN (part of the MailTools package).
How do | decode a CGI form?

You use a standard module, probably CGl.pm. Under no circumstances should you attempt to do so by
hand!

18-0Oct-1998 Version 5.005_02 117

perlfaq9 Perl Programmers Reference Guide perlfaq9

You'll see a lot of CGI programs that blindly read from STDIN the number of bytes equal to
CONTENT_LENGTH for POSTSs, or grab QUERY_STRING for decoding GETs. These programs are very
poorly written. They only work sometimes. They typically forget to check the return valuereaith(®

system call, which is a cardinal sin. They don‘t handle HEAD requests. They don‘t handle multipart forms
used for file uploads. They don‘t deal with GET/POST combinations where query fields are in more than
one place. They don‘t deal with keywords in the query string.

In short, they‘'re bad hacks. Resist them at all costs. Please do not be tempted to reinvent the wheel.
Instead, use the CGIl.pm or CGI_Lite.pm (available from CPAN), or if you‘re trapped in the module—free
land of perll .. perl4, you might look into cgi-lib.pl (available from

http://www.bio.cam.ac.uk/web/form.html).

Make sure you know whether to use a GET or a POST in your form. GETs should only be used for
something that doesn‘t update the server. Otherwise you can get mangled databases and repeated feedback
mail messages. The fancy word for this is “idempotency”. This simply means that there should be no
difference between making a GET request for a particular URL once or multiple times. This is because the
HTTP protocol definition says that a GET request may be cached by the browser, or server, or an intervening
proxy. POST requests cannot be cached, because each request is independent and matters. Typically, POST
requests change or depend on state on the server (query or update a database, send mail, or purchase a
computer).

How do | check a valid mail address?

You can'‘t, at least, not in real time. Bummer, eh?

Without sending mail to the address and seeing whether there's a human on the other hand to answer you,
you cannot determine whether a mail address is valid. Even if you apply the mail header standard, you can
have problems, because there are deliverable addresses that aren't RFC-822 (the mail header standard)
compliant, and addresses that aren‘t deliverable which are compliant.

Many are tempted to try to eliminate many frequently—invalid mail addresses with a simple regexp, such as
MNw.=1H@ (=) +Hw+$/. It's a very bad idea. However, this also throws out many valid
ones, and says nothing about potential deliverability, so is not suggested. Instead, see
http://www.perl.com/CPAN/authors/Tom_Christiansen/scripts/ckaddr.gz , which actually checks against the
full RFC spec (except for nested comments), looks for addresses you may not wish to accept mail to (say,
Bill Clinton or your postmaster), and then makes sure that the hostname given can be looked up in the DNS
MX records. It's not fast, but it works for what it tries to do.

Our best advice for verifying a person‘s mail address is to have them enter their address twice, just as you
normally do to change a password. This usually weeds out typos. If both versions match, send mail to that
address with a personal message that looks somewhat like:

Dear someuser@host.com,

Please confirm the mail address you gave us Wed May 6 09:38:41
MDT 1998 by replying to this message. Include the string
"Rumpelstiltskin” in that reply, but spelled in reverse; that is,

start with "Nik...". Once this is done, your confirmed address will
be entered into our records.

If you get the message back and they‘ve followed your directions, you can be reasonably assured that it's
real.

A related strategy that's less open to forgery is to give them a PIN (personal ID number). Record the address
and PIN (best that it be a random one) for later processing. In the mail you send, ask them to include the PIN
in their reply. But if it bounces, or the message is included via a “vacation” script, it'll be there anyway. So
it's best to ask them to mail back a slight alteration of the PIN, such as with the characters reversed, one
added or subtracted to each digit, etc.

118

Version 5.005_02 18-0Oct-1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

How do | decode a MIME/BASEG64 string?

The MIME-tools package (available from CPAN) handles this and a lot more. Decoding BASE64 becomes
as simple as:

use MIME::base64;
$decoded = decode_base64($encoded);

A more direct approach is to use thgpack() function's "u" format after minor transliterations:

tr#A-Za—z0-9+/##cd; # remove non-base64 chars
tr#tA-Za—-z0-9+/# — #; # convert to uuencoded format
$len = pack('c", 32 + 0.75*length); # compute length byte

print unpack("u", $len . $_); # uudecode and print

How do | return the user‘s mail address?

On systems that support getpwuid, % variable and the Sys::Hostname module (which is part of the
standard perl distribution), you can probably try using something like this:

use Sys::Hostname;
$address = sprintf('%s@%s’, getpwuid($<), hostname);

Company policies on mail address can mean that this generates addresses that the company‘s mail system
will not accept, so you should ask for users’ mail addresses when this matters. Furthermore, not all systems
on which Perl runs are so forthcoming with this information as is Unix.

The Mail::Util module from CPAN (part of the MailTools package) providesadaddress() function

that tries to guess the mail address of the user. It makes a more intelligent guess than the code above, using
information given when the module was installed, but it could still be incorrect. Again, the best way is often
just to ask the user.

How do | send mail?
Use thesendmail program directly:

open(SENDMAIL, "|/usr/lib/sendmail —oi -t —odq")
or die "Can't fork for sendmail: $!\n";

print SENDMAIL <<"EOF";

From: User Originating Mail <me\@host>

To: Final Destination <you\@otherhost>

Subject: A relevant subject line

Body of the message goes here, in as many lines as you like.
EOF
close(SENDMAIL) or warn "sendmail didn’t close nicely";

The —oi option prevents sendmail from interpreting a line consisting of a single dot as "end of message".
The -t option says to use the headers to decide who to send the message-todaqsdys to put the
message into the queue. This last option means your message won'‘t be immediately delivered, so leave it
out if you want immediate delivery.

Or use the CPAN module Mail::Mailer:
use Mail::Mailer;

$mailer = Mail::Mailer—>new();
$mailer->open({ From => $from_address,
To =>$to_address,
Subject => $subject,
)
or die "Can't open: $\n";
print $mailer $body;

18-0Oct-1998 Version 5.005_02 119

perlfaq9 Perl Programmers Reference Guide perlfaq9

$mailer—>close();

The Mail::Internet module uses Net::SMTP which is less Unix—centric than Mail::Mailer, but less reliable.
Avoid raw SMTP commands. There are many reasons to use a mail transport agent like sendmail. These
include queueing, MX records, and security.

How do | read mail?

Use the Mail::Folder module from CPAN (part of the MailFolder package) or the Mail::Internet module
from CPAN (also part of the MailTools package).

sending mail

use Mail::Internet;

use Mail::Header;

say which mail host to use
$ENV{SMTPHOSTS} = 'mail.frii.com’;
create headers

$header = new Mail::Header;
$header—>add('From’, 'gnat@frii.com’);
$header—>add('Subject’, 'Testing’);
$header—>add('To’, 'gnat@frii.com’);

create body

$body = 'This is a test, ignore’;

create mail object

$mail = new Mail::Internet(undef, Header => $header, Body => \[$body]);
send it

$mail->smtpsend or die;

Often a module is overkill, though. Here's a mail sorter.

#1/usr/bin/perl
bysubl - simple sort by subject
my(@msgs, @sub);
my $msgno = -1;
$/=" # paragraph reads
while (<>) {
if (/"From/m) {
/"Subject:\s*(?:Re:\s*)*(.*)/mi;
$sub[++$msgno] = Ic($1) || ;
}
$msgs[$msgno] .= $_;

}

for my $i (sort { $sub[$a] cmp $sub[$b] || $a <=> $b } (0 .. $#msgs)) {
print $msgs[$i];

}

Or more succinctly,

#1/usr/bin/perl -n00

bysub2 - awkish sort—-by—subject

BEGIN { $msgno = -1}

$sub[++$msgno] = (/*Subject:\s*(?:Re:\s*)*(.*)/mi)[0] if /*From/m;
$msg[$msgno] .= $_;

END { print @msg[sort { $sub[$a] cmp $sub[$b] || $a <=>$b } (0 .. $#msg)] }

How do | find out my hosthname/domainname/IP address?

The normal way to find your own hostname is to call thesthame' program. While sometimes
expedient, this has some problems, such as not knowing whether you‘ve got the canonical name or not. It's
one of those tradeoffs of convenience versus portability.

120 Version 5.005_02 18-0Oct-1998

perlfaq9 Perl Programmers Reference Guide perlfaq9

The Sys::Hostname module (part of the standard perl distribution) will give you the hostname after which
you can find out the IP address (assuming you have working DNS) gétnastbyname() call.

use Socket;

use Sys::Hostname;

my $host = hostname();

my $addr = inet_ntoa(scalar(gethostbyname($name)) || 'localhost’);

Probably the simplest way to learn your DNS domain name is to grok it out of /etc/resolv.conf, at least under
Unix. Of course, this assumes several things about your resolv.conf configuration, including that it exists.

(We still need a good DNS domain name—learning method for non—-Unix systems.)

How do | fetch a news article or the active newsgroups?
Use the Net::NNTP or News::NNTPClient modules, both available from CPAN. This can make tasks like
fetching the newsgroup list as simple as:

perl -MNews::NNTPClient
—e 'print News::NNTPClient—>new->list("newsgroups")’
How do | fetch/put an FTP file?
LWP::Simple (available from CPAN) can fetch but not put. Net::FTP (also available from CPAN) is more
complex but can put as well as fetch.
How can | do RPC in Perl?
A DCE:RPC module is being developed (but is not yet available), and will be released as part of the
DCE-Perl package (available from CPAN). No ONC::RPC module is known.
AUTHOR AND COPYRIGHT
Copyright (c) 1997, 1998 Tom Christiansen and Nathan Torkington. All rights reserved.
When included as part of the Standard Version of Perl, or as part of its complete documentation whether
printed or otherwise, this work may be distributed only under the terms of Perl's Artistic License. Any

distribution of this file or derivatives thereofitsideof that package require that special arrangements be
made with copyright holder.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain. You
are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit. A
simple comment in the code giving credit would be courteous but is not required.

18-0Oct-1998 Version 5.005_02 121

perl Perl Programmers Reference Guide perl
NAME
perl — Practical Extraction and Report Language
SYNOPSIS
perl [-sTuU]
[-hv][-V[:configval]
[—cw] [—d[:debugge}] [-D[number/lis}]
[-pna] [—Fpattern] [—l[octal]] [—O[octal]
[=Idir] [-m[-]module] [-M[-]'module..."]
[-P]
[-S]
[—x[dir]]
[—i[extensioh]
[—e‘command’] [—] [programfile] [argument]...
For ease of access, the Perl manual has been split up into a number of sections:
perl Perl overview (this section)
perldelta Perl changes since previous version
perlfaq Perl frequently asked questions
perltoc Perl documentation table of contents
perldata Perl data structures
perlsyn Perl syntax
perlop Perl operators and precedence
perlre Perl regular expressions
perlrun Perl execution and options
perlfunc Perl builtin functions
perlvar Perl predefined variables
perlsub Perl subroutines
perlmod Perl modules: how they work
perlmodlib Perl modules: how to write and use
perlmodinstall Perl modules: how to install from CPAN
perlform Perl formats
perllocale Perl locale support
perlref Perl references
perldsc Perl data structures intro
perllol Perl data structures: lists of lists
perltoot Perl OO tutorial
perlobj Perl objects
perltie Perl objects hidden behind simple variables
perlbot Perl OO tricks and examples
perlipc Perl interprocess communication
perldebug Perl debugging
perldiag Perl diagnostic messages
perlsec Perl security
perltrap Perl traps for the unwary
perlport Perl portability guide
perlstyle Perl style guide
perlpod Perl plain old documentation
perlbook Perl book information
perlembed Perl ways to embed perl in your C or C++ application
perlapio Perl internal 10 abstraction interface
perlxs Perl XS application programming interface
122 Version 5.005_02 18-0Oct-1998

perl Perl Programmers Reference Guide perl

perixstut Perl XS tutorial

perlguts Perl internal functions for those doing extensions

perlcall Perl calling conventions from C

perlhist Perl history records
(If you're intending to read these straight through for the first time, the suggested order will tend to reduce
the number of forward references.)
By default, all of the above manpages are installed indkglocal/man/directory.
Extensive additional documentation for Perl modules is available. The default configuration for perl will
place this additional documentation in thsr/local/lib/perl5/mandirectory (or else in thean subdirectory
of the Perl library directory). Some of this additional documentation is distributed standard with Perl, but
you'll also find documentation for third—party modules there.
You should be able to view Perl's documentation with your man(1l) program by including the proper
directories in the appropriate start-up files, or in the MANPATH environment variable. To find out where
the configuration has installed the manpages, type:

perl =V:man.dir
If the directories have a common stem, sucliuaglocal/man/manland/usr/local/man/man3 you need
only to add that steniysr/local/man to your man(1) configuration files or your MANPATH environment
variable. If they do not share a stem, you'll have to add both stems.
If that doesn't work for some reason, you can still use the suppkedoc script to view module
information. You might also look into getting a replacement man program.
If something strange has gone wrong with your program and you‘re not sure where you should look for help,
try the—w switch first. It will often point out exactly where the trouble is.

DESCRIPTION

Perl is a language optimized for scanning arbitrary text files, extracting information from those text files, and
printing reports based on that information. It's also a good language for many system management tasks.
The language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny, elegant,
minimal).

Perl combines (in the author‘s opinion, anyway) some of the best featuresexf @yk, andsh, so people

familiar with those languages should have little difficulty with it. (Language historians will also note some
vestiges ofcsh Pascal, and even BASIC-PLUS.) Expression syntax corresponds quite closely to C
expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data—if you‘ve

got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth. And
the tables used by hashes (previously called "associative arrays") grow as necessary to prevent degraded
performance. Perl uses sophisticated pattern matching techniques to scan large amounts of data very
quickly. Although optimized for scanning text, Perl can also deal with binary data, and can make dbm files
look like hashes. Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism which
prevents many stupid security holes.

If you have a problem that would ordinarily used or awk or sh, but it exceeds their capabilities or must
run a little faster, and you don'‘t want to write the silly thing in C, then Perl may be for you. There are also
translators to turn yowsedandawk scripts into Perl scripts.

But wait, there's more...
Perl version 5 is nearly a complete rewrite, and provides the following additional benefits:

e Many usability enhancements

It is now possible to write much more readable Perl code (even within regular expressions).
Formerly cryptic variable names can be replaced by mnemonic identifiers. Error messages are more
informative, and the optional warnings will catch many of the mistakes a novice might make. This
cannot be stressed enough. Whenever you get mysterious behavior,-tny givtch!!! Whenever

18-0Oct-1998 Version 5.005_02 123

perl Perl Programmers Reference Guide perl

you don‘t get mysterious behavior, try using anyway.

e Simplified grammar
The new yacc grammar is one half the size of the old one. Many of the arbitrary grammar rules have
been regularized. The number of reserved words has been cut by 2/3. Despite this, nearly all old Perl
scripts will continue to work unchanged.

e Lexical scoping
Perl variables may now be declared within a lexical scope, like "auto” variables in C. Not only is this
more efficient, but it contributes to better privacy for "programming in the large". Anonymous
subroutines exhibit deep binding of lexical variables (closures).

e Arbitrarily nested data structures
Any scalar value, including any array element, may now contain a reference to any other variable or
subroutine. You can easily create anonymous variables and subroutines. Perl manages your
reference counts for you.

e Modularity and reusability
The Perl library is now defined in terms of modules which can be easily shared among various
packages. A package may choose to import all or a portion of a module's published interface.
Pragmas (that is, compiler directives) are defined and used by the same mechanism.

e Object-oriented programming
A package can function as a class. Dynamic multiple inheritance and virtual methods are supported
in a straightforward manner and with very little new syntax. Filehandles may now be treated as
objects.

e Embeddable and Extensible
Perl may now be embedded easily in your C or C++ application, and can either call or be called by
your routines through a documented interface. The XS preprocessor is provided to make it easy to
glue your C or C++ routines into Perl. Dynamic loading of modules is supported, and Perl itself can
be made into a dynamic library.

e POSIX compliant
A major new module is the POSIX module, which provides access to all available POSIX routines
and definitions, via object classes where appropriate.

e Package constructors and destructors

The new BEGIN and END blocks provide means to capture control as a package is being compiled,
and after the program exits. As a degenerate case they work just like awk's BEGIN and END when
you use the-p or —n switches.

e Multiple simultaneous DBM implementations
A Perl program may now access DBM, NDBM, SDBM, GDBM, and Berkeley DB files from the
same script simultaneously. In fact, the old dbmopen interface has been generalized to allow any
variable to be tied to an object class which defines its access methods.

e Subroutine definitions may now be autoloaded
In fact, the AUTOLOAD mechanism also allows you to define any arbitrary semantics for undefined
subroutine calls. It's not for just autoloading.

e Regular expression enhancements

You can now specify nongreedy quantifiers. You can now do grouping without creating a
backreference. You can now write regular expressions with embedded whitespace and comments for
readability. A consistent extensibility mechanism has been added that is upwardly compatible with
all old regular expressions.

124 Version 5.005_02 18-0Oct-1998

perl

Perl Programmers Reference Guide perl

e Innumerable Unbundled Modules
The Comprehensive Perl Archive Network describegaeirimodlibcontains hundreds of
plug—and-play modules full of reusable code. Bge//www.perl.com/CPANor a site near you.
e Compilability
While not yet in full production mode, a working perl-to—C compiler does exist. It can generate
portable byte code, simple C, or optimized C code.

Okay, that'sdefinitelyenough hype.

ENVIRONMENT

Seeperlrun.

AUTHOR

BUGS

Larry Wall darry@wall.org with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate the use of Perl in
their applications, or if you wish to simply express your gratitude to Larry and the Perl developers, please
write to perl-thanks@perl.org

FILES
"ftmp/perl-e$$" temporary file for -e commands
"@INC" locations of perl libraries
SEE ALSO
azp awk to perl translator
s2p sed to perl translator
DIAGNOSTICS

The-w switch produces some lovely diagnostics.

Seeperldiag for explanations of all Perl's diagnostics. Time diagnostics pragma automatically
turns Perl's normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the next token or token
type that was to be examined. (In the case of a script passed to Pexlswi#iches, eachke is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as "Insecure dependency".
Seeperlsec

Did we mention that you should definitely consider using-theswitch?

The-w switch is not mandatory.

Perl is at the mercy of your machine's definitions of various operations such as type est{hg, , and
floating—point output wittsprintf()

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This
doesn't apply teysread() andsyswrite() .)

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are still a
few arbitrary limits: a given variable name may not be longer than 255 characters, and no component of
your PATH may be longer than 255 if you us8 A regular expression may not compile to more than
32767 bytes internally.

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, orgsrl -V) to <perlbug@perl.comlf you've succeeded in compiling
perl, the perlbug script in the utils/ subdirectory can be used to help mail in a bug report.

18-0Oct-1998 Version 5.005_02 125

perl Perl Programmers Reference Guide perl

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don't tell anyone | said that.

NOTES
The Perl motto is "There's more than one way to do it." Divining how many more is left as an exercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for
why.

126 Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

NAME
perldelta — what's new for perl5.004

DESCRIPTION
This document describes differences between the 5.003 release (as documdegiamming Perl
second edition—the Camel Book) and this one.
Supported Environments
Perl5.004 builds out of the box on Unix, Plan 9, LynxOS, VMS, 0S/2, QNX, AmigaOS, and Windows NT.
Perl runs on Windows 95 as well, but it cannot be built there, for lack of a reasonable command interpreter.
Core Changes
Most importantly, many bugs were fixed, including several security problems. S€bahgesfile in the
distribution for details.
List assignment to %ENV works
%ENV = () and%ENV = @list now work as expected (except on VMS where it generates a fatal error).

"Can't locate Foo.pm in @INC" error now lists @INC

Compilation option: Binary compatibility with 5.003
There is a new Configure question that asks if you want to maintain binary compatibility with Perl 5.003. If
you choose binary compatibility, you do not have to recompile your extensions, but you might have symbol
conflicts if you embed Perl in another application, just as in the 5.003 release. By default, binary
compatibility is preserved at the expense of symbol table pollution.

$PERL50OPTenvironment variable
You may now put Perl options in i ERL50PTenvironment variable. Unless Perl is running with taint
checks, it will interpret this variable as if its contents had appeared on a "#!perl" line at the beginning of your
script, except that hyphens are optional. PERL50OPT may only be used to set the following switches:
—[DIMUdmw] .

Limitations on —M, —-m, and —T options
The—-Mand-moptions are no longer allowed on #ie line of a script. If a script needs a module, it should
invoke it with theuse pragma.

The -T option is also forbidden on thg line of a script, unless it was present on the Perl command line.
Due to the way#! works, this usually means that must be in the first argument. Thus:

#!/usr/bin/perl =T —w
will probably work for an executable script invokedsagsptname , while:
#!/usr/bin/perl —w =T

will probably fail under the same conditions. (Non-Unix systems will probably not follow this rule.) But
perl scriptname is guaranteed to fail, since then there is no chane& &feing found on the command
line before it is found on thé line.

More precise warnings

If you removed the-w option from your Perl 5.003 scripts because it made Perl too verbose, we recommend
that you try putting it back when you upgrade to Perl 5.004. Each new perl version tends to remove some
undesirable warnings, while adding new warnings that may catch bugs in your scripts.

Deprecated: Inherited AUTOLOADor non—-methods

Before Perl 5.004AUTOLOADunNctions were looked up as methods (using@i8&Ahierarchy), even when
the function to be autoloaded was called as a plain function Ke@:bar()), not a method (e.qg.
Foo—->bar() or$obj->bar()).

18-0Oct-1998 Version 5.005_02 127

perl5004delta Perl Programmers Reference Guide perl5004delta

Perl 5.005 will use method lookup only for methoA8ITOLOAB. However, there is a significant base of
existing code that may be using the old behavior. So, as an interim step, Perl 5.004 issues an optional
warning when a non—-method uses an inheed OLOAD

The simple rule is: Inheritance will not work when autoloading hon—-methods. The simple fix for old code
is: In any module that used to depend on inheriéib OLOADor non—-methods from a base class named
BaseClass , executeeAUTOLOAD = \&BaseClass::AUTOLOAD during startup.

Previously deprecated %OVERLOAD is no longer usable

Using %OVERLOAD to define overloading was deprecated in 5.003. Overloading is now defined using the
overload pragma. %OVERLOAD is still used internally but should not be used by Perl scripise8ead
for more details.

Subroutine arguments created only when they‘re modified

In Perl 5.004, nonexistent array and hash elements used as subroutine parameters are brought into existence
only if they are actually assigned to (\@).

Earlier versions of Perl vary in their handling of such arguments. Perl versions 5.002 and 5.003 always
brought them into existence. Perl versions 5.000 and 5.001 brought them into existence only if they were not
the first argument (which was almost certainly a bug). Earlier versions of Perl never brought them into

existence.

For example, given this code:

undef @a; undef %a;
sub show { print $_[0] };
sub change {$_[0]++ };
show($a[2]);
change($a{b});

After this code executes in Perl 5.08&{b} exists but$a[2] does not. In Perl 5.002 and 5.003, both
$a{b} and$a[2] would have existed (bd#a[2]'s value would have been undefined).

Group vector changeable with ~ $)

The$) special variable has always (well, in Perl 5, at least) reflected not only the current effective group,
but also the group list as returned by getgroups() C function (if there is one). However, until this
release, there has not been a way to cakbétgroups() C function from Perl.

In Perl 5.004, assigning) is exactly symmetrical with examining it: The first number in its string value
is used as the effective gid; if there are any numbers after the first one, they are passed to the
setgroups() C function (if there is one).

Fixed parsing of $$<digit , &$<digit , etc.
Perl versions before 5.004 misinterpreted any type marker followed'bguid a digit. For example$$0"
was incorrectly taken to meafi{$}0" instead of ${$0}". This bug is (mostly) fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two widely—used
modules depend on the old meaning®$0" in a string. So Perl 5.004 still interpre@$«digit " in the

old (broken) way inside strings; but it generates this message as a warning. And in Perl 5.005, this special
treatment will cease.

Fixed localization of $<digit , $&, etc.

Perl versions before 5.004 did not always properly localize the regex-related special variables. Perl 5.004
does localize them, as the documentation has always said it should. This may &suli$®, etc. no
longer being set where existing programs use them.

No resetting of $. on implicit close

The documentation for Perl 5.0 has always stated®has not reset when an already—open file handle is
reopened with no intervening call ¢tose . Due to a bug, perl versions 5.000 through 5did3eset$.
under that circumstance; Perl 5.004 does not.

128 Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

wantarray may return undef

Thewantarray operator returns true if a subroutine is expected to return a list, and false otherwise. In
Perl 5.004wantarray can also return the undefined value if a subroutine's return value will not be used at
all, which allows subroutines to avoid a time—consuming calculation of a return value if it isn‘t going to be
used.

eval EXPR determines value of EXPR in scalar context

Perl (version 5) used to determine the value of EXPR inconsistently, sometimes incorrectly using the
surrounding context for the determination. Now, the value of EXPR (before being parsed by eval) is always
determined in a scalar context. Once parsed, it is executed as before, by providing the context that the scope
surrounding the eval provided. This change makes the behavior Perl4 compatible, besides fixing bugs
resulting from the inconsistent behavior. This program:

@a = qw(time now is time);
print eval @a;
print’|’, scalar eval @a;
used to print something like "timenowis881399109|4", but now (and in perl4) prints "4|4".

Changes to tainting checks
A bug in previous versions may have failed to detect some insecure conditions when taint checks are turned
on. (Taint checks are used in setuid or setgid scripts, or when explicitly turned on wifh itheocation

option.) Although it's unlikely, this may cause a previously—working script to now fail — which should be
construed as a blessing, since that indicates a potentially—serious security hole was just plugged.

The new restrictions when tainting include:

No glob() or<*

These operators may spawn the C shell (csh), which cannot be made safe. This restriction will be
lifted in a future version of Perl when globbing is implemented without the use of an external program.

No spawning if tainted $CDPATH, $ENV, $BASH_ENV

These environment variables may alter the behavior of spawned programs (especially shells) in ways
that subvert security. So now they are treated as dangerous, in the m&iR&r ahd$PATH.

No spawning if tainted $TERMdoesn't look like a terminal name

Some termcap libraries do unsafe things WTHERM. However, it would be unnecessarily harsh to
treat all$TERMvalues as unsafe, since only shell metacharacters can cause tréiiEERIM. So a

tainted STERMis considered to be safe if it contains only alphanumerics, underscores, dashes, and
colons, and unsafe if it contains other characters (including whitespace).

New Opcode module and revised Safe module

A new Opcode module supports the creation, manipulation and application of opcode masks. The revised
Safe module has a new API and is implemented using the new Opcode module. Please read the new Opcode
and Safe documentation.

Embedding improvements

In older versions of Perl it was not possible to create more than one Perl interpreter instance inside a single
process without leaking like a sieve and/or crashing. The bugs that caused this behavior have all been fixed.
However, you still must take care when embedding Perl in a C program. See the updated perlembed
manpage for tips on how to manage your interpreters.

Internal change: FileHandle class based on 10::* classes

File handles are now stored internally as type 10::Handle. The FileHandle module is still supported for
backwards compatibility, but it is now merely a front end to the 10::* modules — specifically, 10::Handle,
10::Seekable, and 10::File. We suggest, but do not require, that you use the 10::* modules in new code.

18-0Oct-1998 Version 5.005_02 129

perl5004delta Perl Programmers Reference Guide perl5004delta

In harmony with this changéGLOB{FILEHANDLE} is now just a backward—compatible synonym for
*GLOB{IO} .

Internal change: PerllO abstraction interface
It is now possible to build Perl with AT's sfio 10 package instead of stdio. Swerlapio for more
details, and th&NSTALL file for how to use it.

New and changed syntax

$coderef- (PARAMS)
A subroutine reference may now be suffixed with an arrow and a (possibly empty) parameter list. This
syntax denotes a call of the referenced subroutine, with the given parameters (if any).

This new syntax follows the pattern $hashref->{FOO} and$aryref->[$foo]: You may
now write &$subref($foo) as$subref->($foo). All of these arrow terms may be chained;
thus,&{$table—>{FOO}}($bar) may now be writte$table—>{FOO}->($bar).

New and changed builtin constants

_ PACKAGE__
The current package name at compile time, or the undefined value if there is no current package (due
to apackage; directive). Like_ FILE__ and__LINE__ , PACKAGE__doesnot interpolate
into strings.

New and changed builtin variables

$7E Extended error message on some platforms. (Also knoEdFENDED OS_ERRGORyou use
English).

$"H The current set of syntax checks enabledigy strict . See the documentation sifict for
more details. Not actually new, but newly documented. Because it is intended for internal use by Perl
core components, there is nge English long name for this variable.

$"M By default, running out of memory it is not trappable. However, if compiled for this, Perl may use the
contents of$*M as an emergency pool aftdie() ing with this message. Suppose that your Perl
were compiled with —-DPERL_EMERGENCY_SBRK and used Perl‘'s malloc. Then

$"M ='a’ x (1<<16);

would allocate a 64K buffer for use when in emergency. SE®N®BIBALL file for information on how
to enable this option. As a disincentive to casual use of this advanced feature, thenesés no
English long name for this variable.

New and changed builtin functions

delete on slices
This now works. (e.glelete @ENV{'PATH', ‘'MANPATH'})

flock
is now supported on more platforms, prefers fcntl to lockf when emulating, and always flushes before
(un)locking.

printf and sprintf

Perl now implements these functions itself; it doesn't use the C library furspiamif() any
more, except for floating—point numbers, and even then only known flags are allowed. As aresult, it is
now possible to know which conversions and flags will work, and what they will do.

The new conversions in Perbgrintf() are:

%i a synonym for %d
%p a pointer (the address of the Perl value, in hexadecimal)
%n special: *stores* the number of characters output so far

130 Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

into the next variable in the parameter list
The new flags that go between #and the conversion are:

prefix octal with "0", hex with "0x"
h interpret integer as C type "short" or "unsigned short"
\% interpret integer as Perl’s standard integer type

Also, where a number would appear in the flags, an asterisk ("*") may be used instead, in which case
Perl uses the next item in the parameter list as the given number (that is, as the field width or
precision). If a field width obtained through "*" is negative, it has the same effect as the ‘-’ flag:
left—justification.

Seesprintffor a complete list of conversion and flags.

keys as an Ivalue

As an lvaluekeys allows you to increase the number of hash buckets allocated for the given hash.
This can gain you a measure of efficiency if you know the hash is going to get big. (This is similar to
pre—extending an array by assigning a larger numd&#tdaoray.) If you say

keys %hash = 200;

then%hash will have at least 200 buckets allocated for it. These buckets will be retained even if you
do %hash = () ; useundef %hash if you want to free the storage whiléhash is still in scope.

You can‘t shrink the number of buckets allocated for the hash kejrgg in this way (but you needn‘t
worry about doing this by accident, as trying has no effect).

my() in Control Structures

You can now useamy() (with or without the parentheses) in the control expressions of control
structures such as:

while (defined(my $line = <>)) {
$line = Ic $line;

} continue {
print $line;

}

if ((my $answer = <STDIN>) =~ /*y(es)?$/i) {
user_agrees();

} elsif ($answer =~ /*n(0)?%/i) {
user_disagrees();

}else {
chomp $answer;
die "$answer’ is neither ‘yes’ nor ‘no™;

}

Also, you can declare a foreach loop control variable as lexical by preceding it with the word "my".
For example, in:

foreach my $i (1, 2, 3) {
some_function();

}

$i is a lexical variable, and the scopebofextends to the end of the loop, but not beyond it.
Note that you still cannot usey() on global punctuation variables suctbasand the like.

pack() and unpack()

A new format ‘w’ represents a BER compressed integer (as defined in ASN.1). Its format is a
sequence of one or more bytes, each of which provides seven bits of the total value, with the most
significant first. Bit eight of each byte is set, except for the last byte, in which bit eight is clear.

18-0Oct-1998 Version 5.005_02 131

perl5004delta Perl Programmers Reference Guide perl5004delta

If ‘p’ or ‘P’ are given undef as values, they now generate a NULL pointer.

Both pack() andunpack() now fail when their templates contain invalid types. (Invalid types
used to be ignored.)

sysseek()

The newsysseek() operator is a variant agfeek() that sets and gets the file's system read/write
position, using the Iseek(2) system call. It is the only reliable way to seek beforesysiagd()
orsyswrite() . Its return value is the new position, or the undefined value on failure.

use VERSION

If the first argument toise is a number, it is treated as a version number instead of a module name. If
the version of the Perl interpreter is less than VERSION, then an error message is printed and Perl
exits immediately. Becausese occurs at compile time, this check happens immediately during the
compilation process, unlikeequire VERSION , which waits until runtime for the check. This is

often useful if you need to check the current Perl version bek®éng library modules which have
changed in incompatible ways from older versions of Perl. (We try not to do this more than we have
to.)

use Module VERSION LIST

If the VERSION argument is present between Module and LIST, tharsthevill call the VERSION
method in class Module with the given version as an argument. The default VERSION method,
inherited from the UNIVERSAL class, croaks if the given version is larger than the value of the
variable$Module::VERSION. (Note that there is not a comma after VERSION!)

This version—checking mechanism is similar to the one currently used in the Exporter module, but it is
faster and can be used with modules that don‘t use the Exporter. It is the recommended method for
new code.

prototype(FUNCTION)

Returns the prototype of a function as a string fodef if the function has no prototype).
FUNCTION is a reference to or the name of the function whose prototype you want to retrieve. (Not
actually new; just never documented before.)

srand

The default seed fasrand , which used to béime , has been changed. Now it's a heady mix of
difficult—to—predict system—-dependent values, which should be sufficient for most everyday purposes.

Previous to version 5.004, callingnd without first callingsrand would yield the same sequence of
random numbers on most or all machines. Now, when perl sees that you're readtingand haven't

yet calledsrand , it callssrand with the default seed. You should still cedand manually if your

code might ever be run on a pre-5.004 system, of course, or if you want a seed other than the default.

$_ as Default

Functions documented in the Camel to defaul$tonow in fact do, and all those that do are so
documented iperlfunc

m//gc does not reset search position on failure

m//x

Them//g match iteration construct has always reset its target string‘s search position (which is visible
through thepos operator) when a match fails; as a result, the m#ég match after a failure starts
again at the beginning of the string. With Perl 5.004, this reset may be disabled by adding the "c" (for
"continue") modifier, i.eim//gc . This feature, in conjunction with th& zero—width assertion,
makes it possible to chain matches together. pSdep andperlre.

ignores whitespace before ?*+{}

The m//x construct has always been intended to ignore all unescaped whitespace. However, before
Perl 5.004, whitespace had the effect of escaping repeat modifiers like "*" or "?"; for exémple,

*p/x was (mis)interpreted da*b/x . This bug has been fixed in 5.004.

132

Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

nested sub{} closures work now
Prior to the 5.004 release, nested anonymous functions didn‘t work right. They do now.

formats work right on changing lexicals
Just like anonymous functions that contain lexical variables that change (like a lexical index variable
for aforeach loop), formats now work properly. For example, this silently failed before (printed
only zeros), but is fine now:

my $i;

foreach $i (1..10){
write;

}

format =
my i is @#
$i

However, it still fails (without a warning) if the foreach is within a subroutine:

my $i;
sub foo {
foreach $i (1..10) {
write;
}
}
foo;
format =
my i is @#
$i

New builtin methods

The UNIVERSAL package automatically contains the following methods that are inherited by all other
classes:

isa(CLASS)
isa returnstrueif its object is blessed into a subclas€bASS

isa is also exportable and can be called as a sub with two arguments. This allows the ability to check
what a reference points to. Example:

use UNIVERSAL gw(isa);
if(isa($ref, '’ARRAY")) {
}
can(METHOD)
can checks to see if its object has a method cad&XHODIf it does then a reference to the sub is
returned; if it does not thamdefis returned.

VERSION([NEED])

VERSIONTreturns the version number of the class (package). If the NEED argument is given then it
will check that the current version (as defined by $M&RSIONvariable in the given package) not

less than NEED; it will die if this is not the case. This method is normally called as a class method.
This method is called automatically by MERSIONform ofuse .

use A 1.2 gw(some imported subs);
implies:

18-0Oct-1998 Version 5.005_02 133

perl5004delta Perl Programmers Reference Guide perl5004delta

A->VERSION(L.2);

NOTE: can directly uses Perl‘s internal code for method lookup,iaad uses a very similar method and
caching strategy. This may cause strange effects if the Perl code dynamically changes @ISA in any package.

You may add other methods to the UNIVERSAL class via Perl or XS code. You do not neseal to
UNIVERSALIn order to make these methods available to your program. This is necessary only if you wish
to haveisa available as a plain subroutine in the current package.

TIEHANDLE now supported
Seeperltie for other kinds ofie() s.

TIEHANDLE classname, LIST
This is the constructor for the class. That means it is expected to return an object of some sort. The
reference can be used to hold some internal information.

sub TIEHANDLE {
print "<shout>\n";
my $i;
return bless \$i, shift;

}

PRINT this, LIST
This method will be triggered every time the tied handle is printed to. Beyond its self reference it also
expects the list that was passed to the print function.

sub PRINT {

$r = shift;

$r++;

return print join($, => map {uc} @_), $\;
}

PRINTF this, LIST
This method will be triggered every time the tied handle is printed to witpriht() function.
Beyond its self reference it also expects the format and list that was passed to the printf function.

sub PRINTF {
shift;
my $fmt = shift;
print sprintf($fmt, @_)."\n";

READ this LIST
This method will be called when the handle is read from viaghe orsysread functions.

sub READ {

$r = shift;

my($buf,$len,$offset) = @_;

print "READ called, \$buf=$buf, \$len=$len, \$offset=$offset";
}

READLINE this
This method will be called when the handle is read from. The method should return undef when there
iS no more data.

sub READLINE {
$r = shift;
return "PRINT called $$r times\n"

134 Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

GETC this
This method will be called when tigetc function is called.

sub GETC { print "Don’t GETC, Get Perl"; return "a";

DESTROY this

As with the other types of ties, this method will be called when the tied handle is about to be destroyed.
This is useful for debugging and possibly for cleaning up.

sub DESTROY {
print "</shout>\n";

}

Malloc enhancements

If perl is compiled with the malloc included with the perl distribution (that jgeif —V:d_mymalloc is
‘define’) then you can print memory statistics at runtime by running Perl thusly:

env PERL_DEBUG_MSTATS=2 perl your_script_here

The value of 2 means to print statistics after compilation and on exit; with a value of 1, the statistics are
printed only on exit. (If you want the statistics at an arbitrary time, you'll need to install the optional module
Devel::Peek.)

Three new compilation flags are recognized by malloc.c. (They have no effect if perl is compiled with
systermmalloc() .)

-DPERL_EMERGENCY_SBRK

If this macro is defined, running out of memory need not be a fatal error: a memory pool can allocated
by assigning to the special variaeM. See'$"M".

-DPACK_MALLOC

Perl memory allocation is by bucket with sizes close to powers of two. Because of these malloc
overhead may be big, especially for data of size exactly a power of tR&ACK_MALLOG defined,

perl uses a slightly different algorithm for small allocations (up to 64 bytes long), which makes it
possible to have overhead down to 1 byte for allocations which are powers of two (and appear quite
often).

Expected memory savings (with 8-byte alignmenalignbytes) is about 20% for typical Perl
usage. Expected slowdown due to additional malloc overhead is in fractions of a percent (hard to
measure, because of the effect of saved memory on speed).

-DTWO_POT_OPTIMIZE

Similarly to PACK_MALLOCthis macro improves allocations of data with size close to a power of
two; but this works for big allocations (starting with 16K by default). Such allocations are typical for
big hashes and special-purpose scripts, especially image processing.

On recent systems, the fact that perl requires 2M from system for 1M allocation will not affect speed
of execution, since the tail of such a chunk is not going to be touched (and thus will not require real
memory). However, it may result in a premature out—of-memory error. So if you will be manipulating
very large blocks with sizes close to powers of two, it would be wise to define this macro.

Expected saving of memory is 0-100% (100% in applications which require most memory in such
2**n chunks); expected slowdown is negligible.
Miscellaneous efficiency enhancements
Functions that have an empty prototype and that do nothing but return a fixed value are now inlined (e.g.
sub PI () {3.14159 }).

Each unique hash key is only allocated once, no matter how many hashes have an entry with that key. So
even if you have 100 copies of the same hash, the hash keys never have to be reallocated.

18-0Oct-1998 Version 5.005_02 135

perl5004delta Perl Programmers Reference Guide perl5004delta

Support for More Operating Systems
Support for the following operating systems is new in Perl 5.004.

Win32

Perl 5.004 now includes support for building a "native" perl under Windows NT, using the Microsoft Visual
C++ compiler (versions 2.0 and above) or the Borland C++ compiler (versions 5.02 and above). The
resulting perl can be used under Windows 95 (if it is installed in the same directory locations as it got
installed in Windows NT). This port includes support for perl extension building toolsikeMakerand

h2xs so that many extensions available on the Comprehensive Perl Archive Network (CPAN) can now be
readily built under Windows NT. See http://www.perl.com/ for more information on CPAN and
README.win32in the perl distribution for more details on how to get started with building this port.

There is also support for building perl under the Cygwin32 environment. Cygwin32 is a set of GNU tools
that make it possible to compile and run many UNIX programs under Windows NT by providing a mostly
UNIX-like interface for compilation and execution. FREADME.cygwin32in the perl distribution for
more details on this port and how to obtain the Cygwin32 toolkit.

Plan 9
SeeREADME.plan9in the perl distribution.

QNX
SeeREADME.qgnx in the perl distribution.

AmigaOS
SeeREADME.amigaosin the perl distribution.

Pragmata
Six new pragmatic modules exist:

use autouse MODULE = qw(subl sub2 sub3)
Defersrequire MODULE until someone calls one of the specified subroutines (which must be
exported by MODULE). This pragma should be used with caution, and only when necessary.

use blib

use blib ‘dir’
Looks for MakeMaker-likeblib' directory structure starting iir (or current directory) and working
back up to five levels of parent directories.

Intended for use on command line with option as a way of testing arbitrary scripts against an
uninstalled version of a package.
use constant NAME = VALUE
Provides a convenient interface for creating compile—time constants, See
Constant Functions in perlsub
use locale
Tells the compiler to enable (or disable) the use of POSIX locales for builtin operations.
Whenuse locale is in effect, the current LC_CTYPE locale is used for regular expressions and
case mapping; LC_COLLATE for string ordering; and LC_NUMERIC for numeric formating in printf

and sprintf (bunot in print). LC_NUMERIC is always used in write, since lexical scoping of formats
is problematic at best.

Eachuse locale orno locale affects statements to the end of the enclosing BLOCK or, if not
inside a BLOCK, to the end of the current file. Locales can be switched and queried with
POSIX::setlocale()

Seeperllocalefor more information.

136 Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

use ops
Disable unsafe opcodes, or any named opcodes, when compiling Perl code.

use vmsish

Enable VMS-specific language features. Currently, there are three VMS-specific features available:
‘status’, which make$? andsystem return genuine VMS status values instead of emulating POSIX;
‘exit’, which makesexit take a genuine VMS status value instead of assumingxitat is an

error; and ‘time’, which makes all times relative to the local time zone, in the VMS tradition.

Modules

Required Updates

Though Perl 5.004 is compatible with almost all modules that work with Perl 5.003, there are a few
exceptions:

Module Required Version for Perl 5.004

Filter Filter-1.12
LWP libwww-perl-5.08
Tk Tk400.202 (-w makes noise)

Also, the majordomo mailing list program, version 1.94.1, doesn‘t work with Perl 5.004 (nor with perl 4),
because it executes an invalid regular expression. This bug is fixed in majordomo version 1.94.2.
Installation directories

The installperl script now places the Perl source files for extensions in the architecture—specific library
directory, which is where the shared libraries for extensions have always been. This change is intended to
allow administrators to keep the Perl 5.004 library directory unchanged from a previous version, without
running the risk of binary incompatibility between extensions’ Perl source and shared libraries.

Module information summary
Brand new modules, arranged by topic rather than strictly alphabetically:

CGl.pm Web server interface ("Common Gateway Interface")
CGl/Apache.pm Support for Apache’s Perl module

CGl/Carp.pm Log server errors with helpful context
CGl/Fast.pm Support for FastCGlI (persistent server process)
CGlI/Push.pm Support for server push

CGl/Switch.pm Simple interface for multiple server types

CPAN Interface to Comprehensive Perl Archive Network
CPAN::FirstTime Utility for creating CPAN configuration file
CPAN::Nox Runs CPAN while avoiding compiled extensions
10.pm Top-level interface to 10::* classes

I0/File.pm |0::File extension Perl module

IO/Handle.pm 10::Handle extension Perl module

IO0/Pipe.pm 10::Pipe extension Perl module

I0/Seekable.pm 10::Seekable extension Perl module
I0/Select.pm 10::Select extension Perl module

I0/Socket.pm 10::Socket extension Perl module

Opcode.pm Disable named opcodes when compiling Perl code

ExtUtils/Embed.pm Utilities for embedding Perl in C programs
ExtUtils/testlib.pm Fixes up @INC to use just-built extension

FindBin.pm Find path of currently executing program

Class/Struct.pm Declare struct-like datatypes as Perl classes

18-0Oct-1998 Version 5.005_02 137

perl5004delta Perl Programmers Reference Guide perl5004delta

Fentl

File/stat.pm By—name interface to Perl’s builtin stat
Net/hostent.pm By—-name interface to Perl’s builtin gethost*
Net/netent.pm By—name interface to Perl’s builtin getnet*

Net/protoent.pm By-name interface to Perl’s builtin getproto*
Net/servent.pm By—-name interface to Perl’s builtin getserv*
Time/gmtime.pm By—name interface to Perl’s builtin gmtime
Time/localtime.pm By-name interface to Perl’s builtin localtime

Time/tm.pm Internal object for Time::{gm,local}time
User/grent.pm By—-name interface to Perl’s builtin getgr*
User/pwent.pm By—-name interface to Perl's builtin getpw*

Tie/RefHash.pm Base class for tied hashes with references as keys

UNIVERSAL.pm Base class for *ALL* classes

New constants in the existing Fcntl modules are now supported, provided that your operating system
happens to support them:

F_GETOWN F_SETOWN
O_ASYNC O_DEFER O_DSYNC O_FSYNC O_SYNC
O_EXLOCK O_SHLOCK

These constants are intended for use with the Perl opesteopen() and fentl() and the basic
database modules like SDBM_File. For the exact meaning of these and other Fcntl constants please refer to
your operating system's documentation fiontl() andopen() .

In addition, the Fcntl module now provides these constants for use with the Perl dimsriafpr
LOCK_SH LOCK_EX LOCK_NB LOCK_UN

These constants are defined in all environments (because where therfloiskfjo system call, Perl
emulates it). However, for historical reasons, these constants are not exported unless they are explicitly
requested with the ":flock" tag (eugse Fcntl “:flock’).

The 10 module provides a simple mechanism to load all of the 10 modules at one go. Currently this
includes:

10::Handle
10::Seekable
10::File
10::Pipe
10::Socket

For more information on any of these modules, please see its respective documentation.

Math::Complex

The Math::Complex module has been totally rewritten, and now supports more operations. These are
overloaded:

+ — * [** <=> neg ~ abs sqrt exp log sin cos atan2 " (stringify)
And these functions are now exported:

pii Re Im arg

log10 logn In cbrt root
tan

csc sec cot

asin acos atan

acsc asec acot

138

Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

sinh cosh tanh
csch sech coth
asinh acosh atanh
acsch asech acoth
cplx cplxe
Math::Trig
This new module provides a simpler interface to parts of Math::Complex for those who need trigonometric
functions only for real numbers.

DB_File
There have been quite a few changes made to DB_File. Here are a few of the highlights:

° Fixed a handful of bugs.

° By public demand, added support for the standard hash furectiists()
° Made it compatible with Berkeley DB 1.86.

° Made negative subscripts work with RECNO interface.

° Changed the default flags from O_RDWR to O_CREAT|O_RDWR and the default mode from 0640 to
0666.

° Made DB_File automatically import tiepen() constants (O_RDWR, O_CREAT etc.) from Fcntl, if
available.

° Updated documentation.

Refer to the HISTORY section in DB_File.pm for a complete list of changes. Everything after DB_File 1.01
has been added since 5.003.

Net::Ping
Major rewrite — support added for both udp echo and real icmp pings.

Object-oriented overrides for builtin operators
Many of the Perl builtins returning lists now have object-oriented overrides. These are:

File::stat
Net::hostent
Net::netent
Net::protoent
Net::servent
Time::gmtime
Time::localtime
User::grent
User::pwent

For example, you can now say

use File::stat;
use User::pwent;
$his = (stat($filename)->st_uid == pwent($whoever)->pw_uid);

Utility Changes
pod2html

Sends converted HTML to standard output
The pod2htmlutility included with Perl 5.004 is entirely new. By default, it sends the converted
HTML to its standard output, instead of writing it to a file like Perl 5.0@@d2htmldid. Use the
—outfile=FILENAME option to write to a file.

18-0Oct-1998 Version 5.005_02 139

perl5004delta Perl Programmers Reference Guide perl5004delta

xsubpp

void XSUBs now default to returning nothing

Due to a documentation/implementation bug in previous versions of Perl, XSUBs with a return type of
void have actually been returning one value. Usually that value was the GV for the XSUB, but
sometimes it was some already freed or reused value, which would sometimes lead to program failure.

In Perl 5.004, if an XSUB is declared as returniog , it actually returns no value, i.e. an empty list
(though there is a backward—compatibility exception; see below). If your XSUB really does return an
SV, you should give it a return type &Y * .

For backward compatibilitygsubpptries to guess whethevaid XSUB is reallyvoid or if it wants
to return arSV * . It does so by examining the text of the XSUBxstibppfinds what looks like an
assignment t&T(0) , it assumes that the XSUB's return type is re@Ny* .

C Language API Changes

gv_fetchmethod and perl_call_sv

The gv_fetchmethod function finds a method for an object, just like in Perl 5.003. The GV it
returns may be a method cache entry. However, in Perl 5.004, method cache entries are not visible to
users; therefore, they can no longer be passed diregibritacall_sv . Instead, you should use the
GvCVmacro on the GV to extract its CV, and pass the Qpetb call_sv

The most likely symptom of passing the resulgef fetchmethod to perl_call_sv is Perl's
producing an "Undefined subroutine called" error onseondcall to a given method (since there is
no cache on the first call).

perl_eval_pv

A new function handy for eval‘ing strings of Perl code inside C code. This function returns the value
from the eval statement, which can be used instead of fetching globals from the symbol table. See
perlguts perlembedandperlcall for details and examples.

Extended API for manipulating hashes

Internal handling of hash keys has changed. The old hashtable API is still fully supported, and will
likely remain so. The additions to the API allow passing keyS\&s, so thatied hashes can be

given real scalars as keys rather than plain strings (nontied hashes still can only use strings as keys).
New extensions must use the new hash access functions and macros if they wisB\% kegs.

These additions also make it feasible to manipEes (hash entries), which can be more efficient.
Seeperlgutsfor details.

Documentation Changes
Many of the base and library pods were updated. These new pods are included in section 1:

perldelta

This document.

perifaq

Frequently asked questions.

perllocale

Locale support (internationalization and localization).

peritoot

Tutorial on Perl OO programming.

perlapio

Perl internal 10 abstraction interface.

140

Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

perlmodlib
Perl module library and recommended practice for module creation. Extractegdrionod(which is
much smaller as a result).

perldebug
Although not new, this has been massively updated.

perlsec
Although not new, this has been massively updated.

New Diagnostics
Several new conditions will trigger warnings that were silent before. Some only affect certain platforms.
The following new warnings and errors outline these. These messages are classified as follows (listed in
increasing order of desperation):
(W) A warning (optional).
(D) A deprecation (optional).
(S) A severe warning (mandatory).
(F) A fatal error (trappable).
(P) An internal error you should never see (trappable).
(X) A very fatal error (nontrappable).
(A) An alien error message (not generated by Perl).
"my" variable %s masks earlier declaration in same scope
(W) A lexical variable has been redeclared in the same scope, effectively eliminating all access to the
previous instance. This is almost always a typographical error. Note that the earlier variable will still
exist until the end of the scope or until all closure referents to it are destroyed.
%s argument is not a HASH element or slice
(F) The argument tdelete() = must be either a hash element, such as

$foo{$bar}
$ref->[12]->{"susie"

or a hash slice, such as

@foo{$bar, $baz, $xyzzy}
@{$ref->[12]H{"susie", "queue"}
Allocation too large: %lx
(X) You can't allocate more than 64K on an MS-DOS machine.

Allocation too large
(F) You can't allocate more than 2731+"small amount" bytes.

Applying %s to %s will act on scalar(%s)
(W) The pattern match (//), substitution (s///), and transliteration (tr///) operators work on scalar values.
If you apply one of them to an array or a hash, it will convert the array or hash to a scalar value — the
length of an array, or the population info of a hash — and then work on that scalar value. This is
probably not what you meant to do. $gepandmapfor alternatives.

Attempt to free nonexistent shared string

(P) Perl maintains a reference counted internal table of strings to optimize the storage and access of
hash keys and other strings. This indicates someone tried to decrement the reference count of a string
that can no longer be found in the table.

Attempt to use reference as lvalue in substr

(W) You supplied a reference as the first argumerstutastr() used as an lvalue, which is pretty
strange. Perhaps you forgot to dereference it first.sSest

18-0Oct-1998 Version 5.005_02 141

perl5004delta Perl Programmers Reference Guide perl5004delta

Bareword "%s" refers to nonexistent package
(W) You used a qualified bareword of the foFno:: , but the compiler saw no other uses of that
namespace before that point. Perhaps you need to predeclare a package?

Can't redefine active sort subroutine %s
(F) Perl optimizes the internal handling of sort subroutines and keeps pointers into them. You tried to
redefine one such sort subroutine when it was currently active, which is not allowed. If you really
want to do this, you should wrisert { &func } @x instead ofort func @x

Can't use bareword ("%s") as %s ref while "strict refs" in use
(F) Only hard references are allowed by "strict refs". Symbolic references are disallowgerii®ée

Cannot resolve method ‘%s’ overloading ‘%s’ in package ‘%s’
(P) Internal error trying to resolve overloading specified by a method name (as opposed to a subroutine
reference).
Constant subroutine %s redefined
(S) You redefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsudbr commentary and workarounds.
Constant subroutine %s undefined
(S) You undefined a subroutine which had previously been eligible for inlining. See
Constant Functions in perlsudbr commentary and workarounds.
Copy method did not return a reference
(F) The method which overloads "="
Died
(F) You passedie() an empty string (the equivalent die
both$@and$_ were empty.

is buggy. S=py Constructar

) or you called it with no args and

Exiting pseudo—block via %s
(W) You are exiting a rather special block construct (like a sort block or subroutine) by unconventional
means, such as a goto, or a loop control statementsoBee

Identifier too long
(F) Perl limits identifiers (names for variables, functions, etc.) to 252 characters for simple names,
somewhat more for compound names (fée:B). You've exceeded Perl‘s limits. Future versions
of Perl are likely to eliminate these arbitrary limitations.

lllegal character %s (carriage return)
(F) A carriage return character was found in the input. This is an error, and not a warning, because
carriage return characters can break multi-line strings, including here documentpr{etg.,
<<EOF;).

lllegal switch in PERL50PT: %s
(X) The PERL5OPT environment variable may only be used to set the following switches:
-[DIMUdmw] .

Integer overflow in hex number
(S) The literal hex number you have specified is too big for your architecture. On a 32-bit architecture
the largest hex literal is OXFFFFFFFF.

Integer overflow in octal number

(S) The literal octal number you have specified is too big for your architecture. On a 32-bit
architecture the largest octal literal is 037777777777.

142 Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

internal error: glob failed

(P) Something went wrong with the external program(s) usedldbr and<*.c> . This may mean

that your csh (C shell) is broken. If so, you should change all of the csh-related variables in config.sh:
If you have tcsh, make the variables refer to it as if it were csh (e.g.

full_csh="/usr/bin/tcsh’); otherwise, make them all empty (except thatsh should be

‘undef’) so that Perl will think csh is missing. In either case, after editing config.sh, run
.IConfigure -S and rebuild Perl.

Invalid conversion in %s: "%s"
(W) Perl does not understand the given format conversiorsBef.

Invalid type in pack: ‘%s’
(F) The given character is not a valid pack type. [@ek

Invalid type in unpack: ‘%s’
(F) The given character is not a valid unpack type. udpack

Name "%s::%s" used only once: possible typo
(W) Typographical errors often show up as unique variable names. If you had a good reason for having
a unigue name, then just mention it again somehow to suppress the message Ydrs pragma
is provided for just this purpose).

Null picture in formline

(F) The first argument to formline must be a valid format picture specification. It was found to be
empty, which probably means you supplied it an uninitialized value p&#erm

Offset outside string

(F) You tried to do a read/write/send/recv operation with an offset pointing outside the buffer. This is
difficult to imagine. The sole exception to this is thgsread() ing past the buffer will extend the
buffer and zero pad the new area.

Out of memory!

(X|F) Themalloc() function returned O, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request.

The request was judged to be small, so the possibility to trap it depends on the way Perl was compiled.
By default it is not trappable. However, if compiled for this, Perl may use the conte$ftdl @fs an
emergency pool aftetie() ing with this message. In this case the error is trapeuie

Out of memory during request for %s

(F) Themalloc() function returned O, indicating there was insufficient remaining memory (or
virtual memory) to satisfy the request. However, the request was judged large enough (compile-time
default is 64K), so a possibility to shut down by trapping this error is granted.

panic: frexp
(P) The library functiorirexp() failed, making printf("%f") impossible.

Possible attempt to put comments in gw() list

(W) gw() lists contain items separated by whitespace; as with literal strings, comment characters are
not ignored, but are instead treated as literal data. (You may have used different delimiters than the
parentheses shown here; braces are also frequently used.)

You probably wrote something like this:

@list = qw(
a # a comment
b # another comment

);

18-0Oct-1998 Version 5.005_02 143

perl5004delta Perl Programmers Reference Guide perl5004delta

when you should have written this:

@list = qw(
a
b
)i
If you really want comments, build your list the old—fashioned way, with quotes and commas:
@list = (

‘a’, #acomment
'b’, # another comment

)i
Possible attempt to separate words with commas

(W) gw() lists contain items separated by whitespace; therefore commas aren‘t needed to separate the
items. (You may have used different delimiters than the parentheses shown here; braces are also
frequently used.)

You probably wrote something like this:
gw!a, b, cl;

which puts literal commas into some of the list items. Write it without commas if you don‘t want them
to appear in your data:

gw!'abcl;

Scalar value @%s{%s} better written as $%s{%s}

(W) You've used a hash slice (indicated by @) to select a single element of a hash. Generally it's
better to ask for a scalar value (indicatedbhy The difference is tha@ifoo{&bar} always behaves

like a scalar, both when assigning to it and when evaluating its argument, @fole&bar}

behaves like a list when you assign to it, and provides a list context to its subscript, which can do weird
things if you're expecting only one subscript.

Stub found while resolving method ‘%s’ overloading ‘%s’ in package ‘%s’

(P) Overloading resolution over @ISA tree may be broken by importing stubs. Stubs should never be
implicitely created, but explicit calls wan may break this.

Too late for "=T" option

(X) The #! line (or local equivalent) in a Perl script contains-thieoption, but Perl was not invoked
with =T in its argument list. This is an error because, by the time Perl discov&rinaa script, it's
too late to properly taint everything from the environment. So Perl gives up.

untie attempted while %d inner references still exist
(W) A copy of the object returned frotie (ortied) was still valid whermuntie was called.

Unrecognized character %s

(F) The Perl parser has no idea what to do with the specified character in your Perl script (or eval).
Perhaps you tried to run a compressed script, a binary program, or a directory as a Perl program.

Unsupported function fork
(F) Your version of executable does not support forking.

Note that under some systems, like OS/2, there may be different flavors of Perl executables, some of
which may support fork, some not. Try changing the name you call Perlgsrito , perl__ , and
S0 on.

Use of "$$<digit " to mean "${$}<digit " is deprecated

(D) Perl versions before 5.004 misinterpreted any type marker followed&'byafid a digit. For
example, $$0" was incorrectly taken to meafi{$}0" instead of ${$0}". This bug is (mostly)

144

Version 5.005_02 18-0Oct-1998

perl5004delta Perl Programmers Reference Guide perl5004delta

fixed in Perl 5.004.

However, the developers of Perl 5.004 could not fix this bug completely, because at least two
widely-used modules depend on the old meanindgs$0™ in a string. So Perl 5.004 still interprets
"$$<digit " in the old (broken) way inside strings; but it generates this message as a warning. And
in Perl 5.005, this special treatment will cease.

Value of %s can be "0"; test with defined()
(W) In a conditional expression, you used <HANDLE, <* (glokdch() , or readdir() as a
boolean value. Each of these constructs can return a value of "0"; that would make the conditional
expression false, which is probably not what you intended. When using these constructs in conditional
expressions, test their values with tlefined operator.

Variable "%s" may be unavailable
(W) An inner (nestedqnonymousubroutine is inside mamedsubroutine, and outside that is another
subroutine; and the anonymous (innermost) subroutine is referencing a lexical variable defined in the
outermost subroutine. For example:

sub outermost { my $a; sub middle { sub { $a }}}

If the anonymous subroutine is called or referenced (directly or indirectly) from the outermost
subroutine, it will share the variable as you would expect. But if the anonymous subroutine is called or
referenced when the outermost subroutine is not active, it will see the value of the shared variable as it
was before and during the *first* call to the outermost subroutine, which is probably not what you
want.

In these circumstances, it is usually best to make the middle subroutine anonymous, $sibd}the
syntax. Perl has specific support for shared variables in nested anonymous subroutines; a named
subroutine in between interferes with this feature.

Variable "%s" will not stay shared

(W) An inner (nested)hamed subroutine is referencing a lexical variable defined in an outer
subroutine.

When the inner subroutine is called, it will probably see the value of the outer subroutine‘s variable as
it was before and during the *first* call to the outer subroutine; in this case, after the first call to the
outer subroutine is complete, the inner and outer subroutines will no longer share a common value for
the variable. In other words, the variable will no longer be shared.

Furthermore, if the outer subroutine is anonymous and references a lexical variable outside itself, then
the outer and inner subroutines witvershare the given variable.

This problem can usually be solved by making the inner subroutine anonymous, usog the
syntax. When inner anonymous subs that reference variables in outer subroutines are called or
referenced, they are automatically rebound to the current values of such variables.

Warning: something‘s wrong

(W) You passedvarn() an empty string (the equivalent whrn
and$_ was empty.

) or you called it with no args

llI-formed logical name |%s] in prime_env_iter
(W) A warning peculiar to VMS. A logical name was encountered when preparing to iterate over
%ENV which violates the syntactic rules governing logical names. Since it cannot be translated
normally, it is skipped, and will not appear in %ENV. This may be a benign occurrence, as some
software packages might directly modify logical name tables and introduce nonstandard names, or it
may indicate that a logical name table has been corrupted.

Got an error from DosAllocMem

(P) An error peculiar to OS/2. Most probably you‘re using an obsolete version of Perl, and this should
not happen anyway.

18-0Oct-1998 Version 5.005_02 145

perl5004delta Perl Programmers Reference Guide perl5004delta

Malformed PERLLIB_PREFIX
(F) An error peculiar to OS/2. PERLLIB_PREFIX should be of the form

prefix1;prefix2
or
prefix1 prefix2

with nonempty prefixl and prefix2. frefixl is indeed a prefix of a builtin library search path,
prefix2 is substituted. The error may appear if components are not found, or are too long. See
"PERLLIB_PREFIX" inREADME.0s2

PERL_SH_DIR too long
(F) An error peculiar to OS/2. PERL_SH_DIR is the directory to find gdheshell in. See
"PERL_SH_DIR" inREADME.0s2

Process terminated by SIG%s

(W) This is a standard message issued by OS/2 applications, while *nix applications die in silence. It
is considered a feature of the OS/2 port. One can easily disable this by appropriate sighandlers, see
Signals in perlipc See also "Process terminated by SIGTERM/SIGINTREADME.0s2

BUGS

If you find what you think is a bug, you might check the headers of recently posted articles in the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/, the Perl Home
Page.

If you believe you have an unreported bug, please rurpéhnbug program included with your release.
Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along with the output
of perl =V , will be sent off to perlbug@perl.conto be analysed by the Perl porting team.

SEE ALSO
The Chan