
1
DBD::CSV and DBD::File

Version
Version 0.1019.

DBD::File is an abstract general purpose driver for treating files as database tables and
designed to be subclassed rather than used directly.DBD::CSV is a subclass ofDBD::File

for working with files that typically store one row per text line with fields separated with
a comma, semicolon or tab character, typically called CSV files.

Author and Contact Details
The driver author is Jochen Wiedmann. He can be contacted via thedbi-usersmailing
list.

Supported Database Versions and Options
The DBD::File driver works with theSQL::Statement module, version 0.1011 or later.
This module is a simple SQL parser and evaluator. In particular it is restricted to single
table queries. Table joins are not supported.

TheDBD::CSV driver internally uses theText::CSV_XS module, version 0.16 or later, for
reading and writing CSV files.

It’s important to note that while just about everyone thinks they know what the CSV file
format is, there is actually no formal definition of the format and there are many subtle
differences.

Connect Syntax

1

19 May 1999

2 DBD::CSV and DBD::File

TheDBI->connect() Data Source Name, orDSN, can be one of the following:

dbi:CSV:
dbi:CSV:attrs

whereattrs is an optional semicolon-separated list ofkey=valuepairs. Note that you
must not usedbi:File: , as theDBD::File driver is an abstract superclass and not usable
by itself.

Known attributes include:

f_dir=ltdirectorygt

By default files in the current directory are treated as tables. The attributef_dir
makes the module open files in the given directory.

csv_eol

csv_sep_char

csv_quote_char

csv_escape_char

These attributes are used for describing the CSV file format in use. For example, to
open/etc/passwd, which is colon-separated and line-feed terminated, as a table, one
would use:

csv_eol=\n;csv_sep_char=:

The defaults are\r\n , comma (,), double-quote ("), and double-quote (") respec-
tively. All of these attributes and defaults are inherited from theText::CSV_XS mod-
ule.

Numeric Data Handling
Without question, the main disadvantage of theDBD::CSV module is the lack of appropri-
ate type handling. While reading a CSV table you have no way to reliably determine the
correct data type of the fields. All fields look like strings and are treated as such by
default.

TheSQL::Statement module, and hence theDBD::CSV driver, accepts the numeric types
INTEGER and REAL inCREATE TABLEstatements, but they are always stored as strings
and, by default, retrieved as strings.

It is possible to read individual columns as integers or doubles, in which case they are
converted to Perl’s internal data types IV and NV, integer and numeric value respectively.
Unsigned values are not supported.

To assign certain data types to columns, you have to createmetadata definitions. The fol-
lowing example reads a tabletable_namewith columnsI, N, andP of type integer, dou-
ble, and string, respectively:

19 May 1999

my $dbh = DBI->connect("DBI:CSV:");
$dbh->{csv_tables}->{table_name}->{types} =

[C<Text::CSV_XS>::IV(), C<Text::CSV_XS>::NV(),
C<Text::CSV_XS>::PV()];

Note, we assume a certain order of I, N and P!
my $sth = $dbh->prepare("SELECT * FROM foo");

String Data Handling
Similar to numeric values,DBD::CSV accepts more data types inCREATE TABLEstatements
than it really supports. You can useCHAR(n) andVARCHAR(n) with arbitrary numbersn,
BLOB, or TEXT, but in fact these are always BLOBs, in a loose kind of way.

The one underlying string type can store any binary data including embedded NUL char-
acters. However, many other CSV tools may choke if giv en such data.

Date Data Handling
No date or time types are directly supported.

LONG/BLOB Data Handling
BLOBs are equivalent to strings. They are only limited in size by available memory.

Other Data Handling issues
The type_info_all() method is supported and returns the types VARCHAR, CHAR,
INTEGER, REAL, BLOB and TEXT.

Transactions, Isolation and Locking
The driver doesn’t support transactions.

No explicit locks are supported. Tables are locked while statements are executed, but the
lock is immediately released once the statement is completed.

No-Table Expression Select Syntax
You can only retrieve table data. It is not possible to select constants.

Table Join Syntax

DBD::CSV and DBD::File 3

19 May 1999

4 DBD::CSV and DBD::File

Table joins are not supported.

Table and Column Names
Table and column names are case sensitive. Howev er, you should consider that table
names are in fact file names, so tablesFoo and foo may both be present with the same
data. However, they may be subject to different metadata definitions in
$dbh->{’csv_tables’} .

See for more details on table and column names.

Case Sensitivity of LIKE Operator
Tw o different LIKE operators are supported. LIKE is case sensitive, whereas CLIKE is
not.

Row ID
Row IDs are not supported.

Automatic Key or Sequence Generation
Neither automatic keys nor sequences are supported.

Automatic Row Numbering and Row Count Limiting
Neither automatic row numbering nor row count limitations are supported.

Parameter Binding
Question marks are supported as placeholders, as in:

$dbh->do("INSERT INTO A VALUES (?, ?)", undef, $id, $name);

The:1 placeholder style is not supported.

Stored Procedures
Stored procedures are not supported.

Table Metadata

19 May 1999

By default the driver expects the column names being stored in the tables first row, as in:

login:password:uid:gid:comment:shell:homedir
root:s34hj34n34jh:0:0:Superuser:/bin/bash:/root

If column names are not present, you may specifiy column names via:

$dbh->{csv_tables}->{$table}->{skip_rows} = 0;
$dbh->{csv_tables}->{$table}->{col_names} =

[qw(login password uid gid comment shell homedir)];

in which case the first row is handled as a data row.

If column names are not supplied and not read from the first row, the namescol0, col1,
. . . are generated automatically. Column names can be retrieved via the standard
$sth->{NAME} attribute.

The NULLABLEattribute returns an array of all ones. Other metadata attributes are not
supported.

The table names, or file names, can be read via$dbh->table_info() or $dbh->tables()

as usual.

Driver-specific Attributes and Methods
Besides the attributesf_dir, csv_eol, csv_sep_char, csv_quote_charand csv_sep_char
that have already been discussed above, the most important database handle attribute is:

$dbh->{csv_tables}

csv_tables is used for specifying table metadata. It is an hash ref with table names as
keys, the values being hash refs with the following attributes:

file

The file name being associated to the table. By default, the file name is
$dbh->{f_dir}/$table .

col_names

An array ref of column names.

skip_rows

This number of rows will be read from the top of the file before reading the table
data, and the first of those will be treated as an array of column names. However, the
col_namesattribute takes precedence.

types

DBD::CSV and DBD::File 5

19 May 1999

6 DBD::CSV and DBD::File

This is an array ref of theText::CSV_XS type values for the corresponding columns.
Three types are supported and their values are defined by theIV() , NV() , andPV()

functions in theText::CSV_XS package.

There are no driver specific statement handle attributes and no private methods for either
type of handle.

Positioned updates and deletes
Positioned updates and deletes are not supported.

Differences from the DBI Specification
The statement handle attributesPRECISION, SCALE, andTYPEare not supported.

Also note that many statement attributes cease to be available after fetching all the result
rows or calling thefinish() method.

URLs to More Database/Driver Specific Information
http://www.whatis.com/csvfile.htm

Concurrent use of Multiple Handles
The number of database handles is limited by memory only. It is recommended to use
multiple database handles for different table formats.

There are no limitations on the use of multiple statement handles from the same$dbh .

The driver is believed to be completely thread safe.

19 May 1999

