FreeBSD Porter 手冊
內容目錄
	1. 楔子
	2. 製作新的 Port
	3. 打造 Port 快速上手篇	3.1. 編寫 Makefile
	3.2. 撰寫說明檔	3.2.1. pkg-descr
	3.2.2. pkg-plist

	3.3. 產生 checksum 檔
	3.4. 測試 Port
	3.5. 以 portlint 來作檢查 Port
	3.6. 提交新的 Port

	4. Slow Porting	4.1. How Things Work
	4.2. 取得原始碼
	4.3. Modifying the Port
	4.4. Patching	4.4.1. General Rules for Patching
	4.4.2. Manual Patch Generation
	4.4.3. Simple Automatic Replacements

	4.5. 設定
	4.6. 處理使用者輸入

	5. 設定 Makefile	5.1. The Original Source
	5.2. 命名	5.2.1. PORTNAME and
	PORTVERSION
	5.2.2. PORTREVISION and
	PORTEPOCH	5.2.2.1. PORTREVISION
	5.2.2.2. PORTEPOCH
	5.2.2.3. PORTREVISION 和 PORTEPOCH 的使用範例

	5.2.3. PKGNAMEPREFIX 和 PKGNAMESUFFIX
	5.2.4. 套件命名慣例

	5.3. 分類	5.3.1. CATEGORIES
	5.3.2. 目前分類清單
	5.3.3. 選擇正確的目錄
	5.3.4. 提出新的目錄
	5.3.5. Proposing Reorganizing All the Categories

	5.4. The Distribution Files	5.4.1. DISTVERSION/DISTNAME
	5.4.2. MASTER_SITES	5.4.2.1. 使用 MASTER_SITE_* 變數
	5.4.2.2. Magic MASTER_SITES Macros

	5.4.3. USE_GITHUB	5.4.3.1. Fetching Multiple Files from GitHub

	5.4.4. EXTRACT_SUFX
	5.4.5. DISTFILES
	5.4.6. EXTRACT_ONLY
	5.4.7. PATCHFILES
	5.4.8. Multiple Distribution or Patches Files from Multiple
	Locations	5.4.8.1. Simplified Information
	5.4.8.2. Detailed Information
	5.4.8.3. What Does Change for Ports? What Does Not?

	5.4.9. DIST_SUBDIR
	5.4.10. ALWAYS_KEEP_DISTFILES

	5.5. MAINTAINER
	5.6. COMMENT
	5.7. PORTSCOUT
	5.8. 相依性	5.8.1. LIB_DEPENDS
	5.8.2. RUN_DEPENDS
	5.8.3. BUILD_DEPENDS
	5.8.4. FETCH_DEPENDS
	5.8.5. EXTRACT_DEPENDS
	5.8.6. PATCH_DEPENDS
	5.8.7. USES
	5.8.8. USE_*
	5.8.9. Minimal Version of a Dependency
	5.8.10. Notes on Dependencies
	5.8.11. Circular Dependencies Are Fatal
	5.8.12. Problems Caused by Automatic Dependencies
	5.8.13. USE_* and
	WANT_*

	5.9. MASTERDIR
	5.10. Man Pages
	5.11. Info Files
	5.12. Makefile Options	5.12.1. OPTIONS	5.12.1.1. Background
	5.12.1.2. Syntax
	5.12.1.3. Default Options

	5.12.2. Feature Auto-Activation
	5.12.3. Options Helpers	5.12.3.1. OPTIONS_SUB
	5.12.3.2. OPT_USE and OPT_USE_OFF
	5.12.3.3. OPT_CONFIGURE_ENABLE
	5.12.3.4. OPT_CONFIGURE_WITH
	5.12.3.5. OPT_CONFIGURE_ON and OPT_CONFIGURE_OFF
	5.12.3.6. OPT_CMAKE_ON
	 and
	 OPT_CMAKE_OFF
	5.12.3.7. OPT_QMAKE_ON
	 and
	 OPT_QMAKE_OFF
	5.12.3.8. OPT_IMPLIES
	5.12.3.9. OPT_PREVENTS
	 and
	 OPT_PREVENTS_MSG
	5.12.3.10. OPT_VARS
	 and
	 OPT_VARS_OFF
	5.12.3.11. Dependencies,
	 OPT_DEPTYPE
	 and
	 OPT_DEPTYPE_OFF
	5.12.3.12. Generic Variables Replacement,
	 OPT_VARIABLE
	 and
	 OPT_VARIABLE_OFF
	5.12.3.13. Additional Build Targets,
	 TARGET-OPT-on
	 and
	 TARGET-OPT-on

	5.13. Specifying the Working Directory	5.13.1. WRKSRC
	5.13.2. WRKSRC_SUBDIR
	5.13.3. NO_WRKSUBDIR

	5.14. Conflict Handling	5.14.1. CONFLICTS_INSTALL
	5.14.2. CONFLICTS_BUILD
	5.14.3. CONFLICTS

	5.15. Installing Files	5.15.1. INSTALL_*
	Macros
	5.15.2. Stripping Binaries and Shared Libraries
	5.15.3. Installing a Whole Tree of Files
	5.15.4. Install Additional Documentation
	5.15.5. Subdirectories Under PREFIX

	6. Special Considerations	6.1. Staging
	6.2. Bundled Libraries	6.2.1. Why Bundled Libraries Are Bad
	6.2.2. What to do About Bundled Libraries

	6.3. 共用函式庫
	6.4. Ports with Distribution Restrictions or Legal
 Concerns	6.4.1. NO_PACKAGE
	6.4.2. NO_CDROM
	6.4.3. NOFETCHFILES
	6.4.4. RESTRICTED
	6.4.5. RESTRICTED_FILES
	6.4.6. LEGAL_TEXT
	6.4.7. /usr/ports/LEGAL 和 LEGAL
	6.4.8. 範例

	6.5. Building Mechanisms	6.5.1. Building Ports in Parallel
	6.5.2. make, gmake, fmake, 和 imake
	6.5.3. configure Script
	6.5.4. Using cmake
	6.5.5. Using scons

	6.6. 使用 GNU Autotools	6.6.1. 楔子
	6.6.2. libtool and
	libtoolize
	6.6.3. libltdl.so
	6.6.4. autoconf and
	autoheader
	6.6.5. automake and
	aclocal

	6.7. 使用 GNU gettext	6.7.1. 基本用法
	6.7.2. Optional Usage
	6.7.3. Handling Message Catalog Directories

	6.8. 使用 Perl
	6.9. 使用 X11	6.9.1. X.Org Components
	6.9.2. Ports That Require Motif
	6.9.3. X11 字型
	6.9.4. Getting a Fake DISPLAY with Xvfb
	6.9.5. Desktop Entries	6.9.5.1. Using Predefined .desktop
	 Files
	6.9.5.2. Updating Desktop Database
	6.9.5.3. Creating Desktop Entries with
	 DESKTOP_ENTRIES

	6.10. 使用 GNOME	6.10.1. 楔子
	6.10.2. Using USE_GNOME
	6.10.3. 變數

	6.11. GNOME 元件
	6.12. 使用 Qt	6.12.1. 需要 Qt 的 Ports
	6.12.2. Component Selection
	6.12.3. 使用 qmake

	6.13. 使用 KDE	6.13.1. KDE 4 Variable Definitions

	6.14. 使用 Java	6.14.1. 變數定義
	6.14.2. Building with Ant
	6.14.3. Best Practices

	6.15. 網路應用程式, Apache 和 PHP	6.15.1. Apache
	6.15.2. 網路應用程式
	6.15.3. PHP
	6.15.4. PEAR Modules	6.15.4.1. Horde Modules

	6.16. 使用 Python
	6.17. 使用 Tcl/Tk
	6.18. 使用 Emacs
	6.19. 使用 Ruby
	6.20. 使用 SDL
	6.21. 使用 wxWidgets	6.21.1. 楔子
	6.21.2. Version Selection
	6.21.3. Component Selection
	6.21.4. Unicode
	6.21.5. Detecting Installed Versions
	6.21.6. Defined Variables
	6.21.7. Processing in
	bsd.port.pre.mk
	6.21.8. Additional configure
	Arguments

	6.22. 使用 Lua	6.22.1. 楔子
	6.22.2. Version Selection
	6.22.3. Defined Variables

	6.23. 使用 iconv
	6.24. 使用 Xfce
	6.25. 使用 Mozilla
	6.26. 使用 Databases
	6.27. Starting and Stopping Services (rc
 Scripts)	6.27.1. Pre-Commit Checklist

	6.28. Adding Users and Groups
	6.29. Ports That Rely on Kernel Sources

	7. Advanced pkg-plist Practices	7.1. Changing pkg-plist Based on Make
 Variables
	7.2. Empty Directories	7.2.1. Cleaning Up Empty Directories
	7.2.2. Creating Empty Directories

	7.3. Configuration Files
	7.4. Dynamic Versus Static Package List
	7.5. Automated Package List Creation
	7.6. Expanding Package List with Keywords	7.6.1. @desktop-file-utils
	7.6.2. @fc
	directory
	7.6.3. @fcfontsdir
	directory
	7.6.4. @fontsdir
	directory
	7.6.5. @glib-schemas
	7.6.6. @info
	file
	7.6.7. @kld
	directory
	7.6.8. @rmtry
	file
	7.6.9. @sample
	file
	[file]
	7.6.10. @shared-mime-info
	directory
	7.6.11. @shell
	file
	7.6.12. @terminfo
	7.6.13. Base Keywords	7.6.13.1. @
	 [file]
	7.6.13.2. @preexec
	 command,
	 @postexec
	 command,
	 @preunexec
	 command,
	 @postunexec
	 command
	7.6.13.3. @mode
	 mode
	7.6.13.4. @owner
	 user
	7.6.13.5. @group
	 group
	7.6.13.6. @comment
	 string
	7.6.13.7. @dir
	 directory
	7.6.13.8. @exec
	 command,
	 @unexec
	 command (Deprecated)
	7.6.13.9. @dirrm
	 directory (Deprecated)
	7.6.13.10. @dirrmtry
	 directory (Deprecated)

	7.6.14. Creating New Keywords	7.6.14.1. attributes
	7.6.14.2. action
	7.6.14.3. arguments
	7.6.14.4. pre-install,
	 post-install,
	 pre-deinstall,
	 post-deinstall,
	 pre-upgrade,
	 post-upgrade
	7.6.14.5. Custom Keyword Examples

	8. pkg-*	8.1. pkg-message
	8.2. pkg-install
	8.3. pkg-deinstall
	8.4. Changing the Names of
 pkg-*
	8.5. Making Use of SUB_FILES and
 SUB_LIST

	9. 測試 Port	9.1. Running make describe
	9.2. Portlint
	9.3. Port 工具
	9.4. PREFIX 以及 DESTDIR
	9.5. Poudriere	9.5.1. Installing Poudriere
	9.5.2. Setting Up Poudriere
	9.5.3. Creating Poudriere
	Jails
	9.5.4. Keeping Poudriere Jails
	Updated
	9.5.5. Setting Up Ports Trees for Use with
	Poudriere
	9.5.6. Using Manually Managed Ports Trees with Poudriere
	9.5.7. Keeping Poudriere Ports Trees Updated
	9.5.8. Testing Ports
	9.5.9. Using Sets
	9.5.10. Providing a Custom make.conf
	File
	9.5.11. Pruning no Longer Needed Distfiles

	9.6. Tinderbox

	10. Upgrading a Port	10.1. Using Subversion to Make
 Patches
	10.2. UPDATING and
 MOVED	10.2.1. /usr/ports/UPDATING
	10.2.2. /usr/ports/MOVED

	11. 安全性	11.1. Why Security is So Important
	11.2. Fixing Security Vulnerabilities
	11.3. Keeping the Community Informed	11.3.1. The VuXML Database
	11.3.2. A Short Introduction to VuXML
	11.3.3. Testing Changes to the VuXML Database

	12. Dos and Don'ts	12.1. 楔子
	12.2. WRKDIR
	12.3. WRKDIRPREFIX
	12.4. Differentiating Operating Systems and OS Versions
	12.5. Writing Something After
 bsd.port.mk
	12.6. 在 Wrapper Scripts 中使用 exec　敘述句
	12.7. Do Things Rationally
	12.8. Respect Both CC and
 CXX
	12.9. Respect CFLAGS
	12.10. Feedback
	12.11. README.html
	12.12. Marking a Port as Architecture Neutral
	12.13. Marking a Port Not Installable with
 BROKEN, FORBIDDEN, or
 IGNORE	12.13.1. 變數
	12.13.2. Implementation Notes

	12.14. Marking a Port for Removal with
 DEPRECATED or
 EXPIRATION_DATE
	12.15. Avoid Use of the .error
 Construct
	12.16. sysctl　的使用
	12.17. Rerolling Distfiles
	12.18. Avoiding Linuxisms
	12.19. Miscellanea

	13. A Sample Makefile
	14. Keeping Up	14.1. FreshPorts
	14.2. The Web Interface to the Source Repository
	14.3. The FreeBSD Ports Mailing List
	14.4. The FreeBSD Port Building Cluster
	14.5. Portscout: the FreeBSD Ports Distfile Scanner
	14.6. The FreeBSD Ports Monitoring System

	15. Using USES
 Macros	15.1. An Introduction to USES
	15.2. ada
	15.3. autoreconf
	15.4. blaslapack
	15.5. bison
	15.6. charsetfix
	15.7. cmake
	15.8. compiler
	15.9. cpe
	15.10. cran
	15.11. desktop-file-utils
	15.12. desthack
	15.13. display
	15.14. dos2unix
	15.15. drupal
	15.16. execinfo
	15.17. fakeroot
	15.18. fam
	15.19. fmake
	15.20. fonts
	15.21. fortran
	15.22. fuse
	15.23. gecko
	15.24. gettext
	15.25. gettext-runtime
	15.26. gettext-tools
	15.27. ghostscript
	15.28. gmake
	15.29. gperf
	15.30. gssapi
	15.31. horde
	15.32. iconv
	15.33. imake
	15.34. kmod
	15.35. lha
	15.36. libarchive
	15.37. libedit
	15.38. libtool
	15.39. localbase
	15.40. lua
	15.41. makeinfo
	15.42. makeself
	15.43. metaport
	15.44. mono
	15.45. motif
	15.46. ncurses
	15.47. ninja
	15.48. objc
	15.49. openal
	15.50. pathfix
	15.51. pear
	15.52. perl5
	15.53. pgsql
	15.54. pkgconfig
	15.55. pure
	15.56. python
	15.57. qmail
	15.58. qmake
	15.59. readline
	15.60. scons
	15.61. shared-mime-info
	15.62. shebangfix
	15.63. tar
	15.64. tcl
	15.65. terminfo
	15.66. tk
	15.67. twisted
	15.68. uidfix
	15.69. uniquefiles
	15.70. webplugin
	15.71. xfce
	15.72. zip
	15.73. zope

	16. __FreeBSD_version
 Values

附表目錄
	5.1. 套件命名範例
	5.2. Examples of DISTVERSION and the
	 Derived PORTVERSION
	5.3. Shortcuts for
	 MASTER_SITE_*
	 Macros
	5.4. Magic MASTER_SITES
	 Macros
	5.5. USE_GITHUB Description
	5.6. USE_*
	6.1. Variables for Ports That Use
	 configure
	6.2. Variables for Ports That Use
	 cmake
	6.3. Variables the Users Can Define for
	 cmake Builds
	6.4. Variables for Ports That Use
	 scons
	6.5. Read-Only Variables for Ports That Use
	Perl
	6.6. Variables for Ports That Use X
	6.7. GNOME 元件
	6.8. GNOME Macro Components
	6.9. GNOME Legacy Components
	6.10. Deprecated Components: Do Not Use
	6.11. Variables Provided to Ports That Use Qt
	6.12. 可用的 Qt 函式庫元件
	6.13. Available Qt Tool Components
	6.14. Available Qt Plugin Components
	6.15. Variables for Ports That Use
	 qmake
	6.16. 可用的 KDE 4 元件
	6.17. Variables Which May be Set by Ports That Use
	 Java
	6.18. Variables Provided to Ports That Use Java
	6.19. Constants Defined for Ports That Use Java
	6.20. Variables for Ports That Use Apache
	6.21. Useful Variables for Porting Apache Modules
	6.22. Variables for Ports That Use PHP
	6.23. Most Useful Variables for Ports That Use Python
	6.24. The Most Useful Read-Only Variables for Ports That Use
	Tcl/Tk
	6.25. Useful Variables for Ports That Use Ruby
	6.26. Selected Read-Only Variables for Ports That Use
	Ruby
	6.27. Variables to Select
	 wxWidgets Versions
	6.28. Available wxWidgets
	 Versions
	6.29. wxWidgets Version
	 Specifications
	6.30. Variables to Select Preferred
	 wxWidgets Versions
	6.31. Available wxWidgets
	 Components
	6.32. Available wxWidgets
	 Dependency Types
	6.33. Default wxWidgets
	 Dependency Types
	6.34. Variables to Select Unicode in
	 wxWidgets
	 Versions
	6.35. Variables Defined for Ports That Use
	 wxWidgets
	6.36. Legal Values for
	 WX_CONF_ARGS
	6.37. Variables Defined for Ports That Use
	 Lua
	6.38. Variables for Ports That Use Mozilla
	6.39. Variables for Ports Using Databases
	10.1. Subversion Update File
	Prefixes
	16.1. __FreeBSD_version Values

範例目錄
	5.1. Simple Use of USE_GITHUB
	5.2. More Complete Use of
	 USE_GITHUB
	5.3. Use of USE_GITHUB with
	 DISTVERSIONPREFIX
	5.4. Use of USE_GITHUB with Multiple
	 Distribution Files
	5.5. Use of USE_GITHUB with Multiple
	 Distribution Files Using
	 GH_TUPLE
	5.6. Simplified Use of MASTER_SITES:n
	 with One File Per Site
	5.7. Simplified Use of MASTER_SITES:n
	 with More Than One File Per Site
	5.8. Detailed Use of
		 MASTER_SITES:n in
		 MASTER_SITE_SUBDIR
	5.9. Detailed Use of
		 MASTER_SITES:n with Comma
		 Operator, Multiple Files, Multiple Sites and
		 Multiple Subdirectories
	5.10. Detailed Use of MASTER_SITES:n
		with SourceForge (SF)
	5.11. Simplified Use of
		MASTER_SITES:n with
		PATCH_SITES
	5.12. Use of
	 ALWAYS_KEEP_DISTFILES
	5.13. Wrong Declaration of an Optional Dependency
	5.14. Correct Declaration of an Optional Dependency
	5.15. Simple Use of OPTIONS
	5.16. Check for Unset Port
	 OPTIONS
	5.17. Practical Use of OPTIONS
	5.18. Wrong Handling of an Option
	5.19. Correct Handling of an Option
	5.20. Simple Use of
	 OPT_IMPLIES
	5.21. Simple Use of
	 OPT_PREVENTS
	6.1. USES= cmake Example
	6.2. Perl 相依性範例
	6.3. USE_XORG 範例
	6.4. 使用 X11 相關變數
	6.5. Selecting Qt 4 Components
	6.6. USES= qmake 範例
	6.7. USE_KDE4 範例
	6.8. Example Makefile for PEAR Class
	6.9. Example Makefile for Horde
	 Module
	6.10. Makefile for a Simple Python
	Module
	6.11. Selecting wxWidgets
	 Components
	6.12. Detecting Installed
	 wxWidgets Versions and
	 Components
	6.13. Using wxWidgets Variables
	 in Commands
	6.14. Simple iconv Usage
	6.15. iconv Usage with
	configure
	6.16. Fixing Hardcoded -liconv
	6.17. Checking for Native iconv
	Availability
	6.18. USES=xfce 範例
	6.19. Using Xfce's Own GTK3 Widgets
	7.1. Example of a @dirrmtryecho
	 Keyword
	7.2. Real Life Example, How @sample is
	 Implemented
	9.1. Using make.conf to Change Default
	 Perl
	12.1. How to Avoid Using .error
	15.1. Using Multiple Values
	15.2. Adding an Argument
	15.3. Adding Multiple Arguments
	15.4. Mixing it All Together
	15.5. Typical Use

FreeBSD Porter 手冊
The FreeBSD Documentation Project

修訂: 48496版權 © 2000-2016 The FreeBSD Documentation Project
版權所有法律聲明 2016-03-29 01:37:53 由 kevlo.
 [

	 章節模式
	
 /
 完整模式
]

章 1. 楔子
幾乎每個 FreeBSD 愛用者都是透過 FreeBSD Ports Collection 來裝各式應用程式("ports")。如同 FreeBSD 的其他部分一樣， 這些 ports 都主要來自許多志工的努力成果，所以在閱讀這份文件時， 請務必感恩在心。
在 FreeBSD 上面，每個人都可以提交新的 port， 或假如該 port 並沒有人維護的話，可以自願維護 —— 這點並不需要任何 commit 的權限，就可以來做這件事情。
章 2. 製作新的 Port
開始對製作新的 port 或更新現有 port 有一些興趣了嗎？太好囉！
下面將介紹一些建立 port 時該注意的事項。如果是想升級現有的 port ，那麼也請參閱 章 10, Upgrading a Port 說明。
因為這份文件可能講得不是十分詳細，可能需要參考 /usr/ports/Mk/bsd.port.mk 這檔是所有 port 的 Makefile 檔都會用到的。就算你不是每天不斷 hacking Makefile，也可以也可以從中獲得很多相關知識。 此外，若有其他特定 port 的問題，也可以到 FreeBSD ports mailing list 來獲得答案。
注意:
本文內所提及的環境變數 (VAR)部份， 只有一些可以替換(overridden)。大部份的環境變數(非全部)通常都會寫在 /usr/ports/Mk/bsd.port.mk 內，其他的也是差不多。 請注意：該檔並非使用一般的 tab 設定值，而是採用 1 個 tab 等於 4 個 space。 Emacs 與 Vim 應該都會在載入該檔時順便讀取相關設定值。 vi(1) 及 ex(1) 這兩個程式也都可以打 :set tabstop=4 以修改設定值。

想要找簡單的開始上手嗎？ 到 請求協助的 ports 清單 瞧瞧，看看是否有你可以幫上忙的。
章 3. 打造 Port 快速上手篇
本節主要介紹如何來快速打造 port，然而實際應用時這快速方法可能不足，完整的 “慢速打造 Port” 的步驟在 章 4, Slow Porting 詳述。
首先取得該應用程式的原始程式碼壓縮檔(tarball)，並把它放到 DISTDIR，預設路徑應該是 /usr/ports/distfiles.
注意:
這些步驟假設軟體可以直接編譯。也就是不需要任何修改就可以直接在 FreeBSD 上執行。如果需要修改，請參見章 4, Slow Porting。

注意:
It is recommended to set the DEVELOPER
 make(1) variable in /etc/make.conf
 before getting into porting.
echo DEVELOPER=yes >> /etc/make.conf
This setting enables the “developer mode”
 that displays deprecation warnings and activates some further
 quality checks on calling make.

3.1. 編寫 Makefile
最簡單的 Makefile 大概是像這樣：
$FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $

PORTNAME=	oneko
PORTVERSION=	1.1b
CATEGORIES=	games
MASTER_SITES=	ftp://ftp.cs.columbia.edu/archives/X11R5/contrib/

MAINTAINER=	youremail@example.com
COMMENT=	Cat chasing a mouse all over the screen

.include <bsd.port.mk>
注意:
In some cases, the Makefile of an
	existing port may contain additional lines in the header,
	such as the name of the port and the date it was created.
	This additional information has been declared obsolete, and
	is being phased out.

嗯，大致就是這樣，看看你已經領略多少了呢？ 看到 $FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $ 這一行的話，別想太多 ，當該 port 正式進入 port tree 時， Subversion 就會自動轉換為相關字串囉。 有關這點的細節部份，可以參閱 sample Makefile 章節。
3.2. 撰寫說明檔
無論是否打算再加工做成 package，有兩個檔案是任何 port 都必須要具備的。 這兩個檔分別是 pkg-descr 及 pkg-plist 。 他們檔名前面都有 pkg- 以跟其他檔案做區別。
3.2.1. pkg-descr
這是此 port 的詳細說明檔，請用一段或幾段文字來說明該 port 的作用
注意:
請注意，這檔絕非「該軟體的說明手冊」或是「如何編譯、使用該 port 的說明」！ 若是從該軟體的 README 或 manpage 直接複製過來的話，請注意。他們常常不是正確的 port 描述或是格式並不適合。例如，manpage會對齊空白，這用monospace字型來看會特別糟糕。

A well-written pkg-descr describes
	the port completely enough that users would not have to
	consult the documentation or visit the website to understand
	what the software does, how it can be useful, or what
	particularly nice features it has. Mentioning certain
	requirements like a graphical toolkit, heavy dependencies,
	runtime environment, or implementation languages help users
	decide whether this port will work for them.
Include a URL to the official WWW homepage. Prepend
	one of the websites (pick the most
	common one) with WWW: (followed by single
	space) so that automated tools will work correctly. If the
	URI is the root of the website or directory, it must be
	terminated with a slash.
注意:
If the listed webpage for a port is not available, try
	 to search the Internet first to see if the official site
	 moved, was renamed, or is hosted elsewhere.

這是 pkg-descr 內容的例子 ：
This is a port of oneko, in which a cat chases a poor mouse all over
the screen.
 :
(etc.)

WWW: http://www.oneko.org/
3.2.2. pkg-plist
這是該 port 所會裝的所有檔案清單，另外因為 package 會由這清單所產生，因此也被稱為『“packing list (打包清單)”』。路徑是相對於安裝的 prefix (通常是 /usr/local)。
這是一個簡單的例子：
bin/oneko
man/man1/oneko.1.gz
lib/X11/app-defaults/Oneko
lib/X11/oneko/cat1.xpm
lib/X11/oneko/cat2.xpm
lib/X11/oneko/mouse.xpm
關於 packing list 方面，可以詳閱 pkg-create(8) manual page 。
注意:
建議清單內的檔名，依照字母順序作排序，那麼下次要升級時， 會比較清楚、方便來更新這份清單。

提示:
手動產生這份清單實在太苦了。尤其若該 port 會裝一大堆檔案的話， 請多善用 自動產生 packing list 會比較省時省力唷。

只有在一種情況下可以省略 pkg-plist 檔： 若安裝的 port 相當單純，只有裝一些檔案，那麼可以在 Makefile 內改用 PLIST_FILES 來取代。 比如，可以在上述的 oneko port 內不必附上 pkg-plist ，而只需在 Makefile 內加入下列幾行：
PLIST_FILES=	bin/oneko \
		man/man1/oneko.1.gz \
		lib/X11/app-defaults/Oneko \
		lib/X11/oneko/cat1.xpm \
		lib/X11/oneko/cat2.xpm \
		lib/X11/oneko/mouse.xpm
注意:
Usage of PLIST_FILES should not be
	 abused. When looking for the origin of a file, people
	 usually try to grep through the
	 pkg-plist files in the ports tree.
	 Listing files in PLIST_FILES in the
	 Makefile makes that search more
	 difficult.

提示:
If a port needs to create an empty directory, or creates
	 directories outside of ${PREFIX} during
	 installation, refer to 節 7.2.1, “Cleaning Up Empty Directories”
	 for more information.

然而，使用這個方法列出 port 的檔案和目錄是必須付出代價： 不能使用 pkg-create(8) 和 節 7.6, “Expanding Package List with Keywords” 描述的關鍵字。 因此，這招僅適用於較簡單的 port ，以及簡化該 port 的作法。 此外，這招還有一個好處：可以減少 ports collection 的整體檔案總數。 所以，在考慮是否要用 pkg-plist 之前， 可以先斟酌這個替代方案看看。
後面會介紹到如何運用 pkg-plist、 PLIST_FILES 這些技巧以因應更複雜的狀況。
3.3. 產生 checksum 檔
只要打 make makesum 就好了， 接下來就會自動產生相對應的 distinfo 檔了唷 。
3.4. 測試 Port
接下來，必須檢驗是否有符合 port 的遊戲規則，包括打包該 port 為 package。 以下有幾個需要確認的重要地方：
	若該 port 沒裝的東西，不要列在 pkg-plist 內。

	若該 port 有裝的東西，請務必列在 pkg-plist 內。

	The port can be installed using the
	 install target. This verifies
	 that the install script works correctly.

	The port can be deinstalled properly using the
	 deinstall target. This
	 verifies that the deinstall script works correctly.

	The port does not access network resources after the
	 fetch target. This is important
	 for package builders, such as ports-mgmt/poudriere.

	Make sure that make package can be
	 run as a normal user (that is, not as
	 root). If that
	 fails, NEED_ROOT=yes must be added to
	 the port Makefile.

過程 3.1. 建議的測試順序
	make stage

	make check-orphans

	make package

	make install

	make deinstall

	pkg add package-filename

	make package (as user)

確認在任何階段都沒有任何警告出現。
Thorough automated testing can be done with
 ports-mgmt/tinderbox or
 ports-mgmt/poudriere from the
 Ports Collection. These applications maintain
 jails where all of the steps shown above
 can be tested without affecting the state of the host
 system.
3.5. 以 portlint 來作檢查 Port
請用 portlint 來檢查該 port 是否有遵循我們的規則。 ports-mgmt/portlint 是 ports collection 的其中一個套件。 它主要可以用來檢驗 Makefile 內容是否正確以及 package 是否有正確命名。
3.6. 提交新的 Port
提交新的 Port 前，請閱讀 DOs and DON'Ts 章節。
現在你很高興終於打造出 port 來囉，唯一剩下要做的就是把它正式放到 FreeBSD ports tree 內，才能讓每個人都能分享使用這個 port。 我們不需要 work 目錄或是檔名像 pkgname.tgz 的 package ，請現在刪除他們。
Next, build the shar(1) file. Assuming the port is
 called oneko, cd to the
 directory above where the oneko directory
 is located, and then type:
 shar `find oneko` > oneko.shar
To submit oneko.shar, use the bug submit
	form (category Ports Tree).
 Add a short
 description of the program to the Description field of the PR
 (perhaps a short version of COMMENT), and
 do not forget to add oneko.shar as an
 attachment.
注意:
Giving a good description in the summary of the problem
	report makes the work of port committers a lot easier. We
	prefer something like “New port:
	 category/portname short description of
	 the port” for new ports. Using this
	scheme makes it easier and faster to begin the work of
	committing the new port.

再次強調一點：不必附上原始 source 的 distfile ，也就是 work 目錄。 同時，也不必附上 make package 時產生的 package。新的 port 請使用 shar(1) ，不要用 diff(1) 。
送出 port 之後，請耐心等候佳音。 有時候可能需要等個幾天或幾個月時間，才會在 FreeBSD ports tree 上正式出現。 等待中的 port PR 清單可以在 http://www.FreeBSD.org/cgi/query-pr-summary.cgi?category=ports 查閱。
在看過新的 port 之後，如果需要的話，我們會回覆您，然後會將它提交到 port tree 。 您的大名會被列在 Additional FreeBSD Contributors 列表上，以及其他檔案中。
章 4. Slow Porting
Ok...事實上並不太可能這麼簡單，port 方面可能需要作些修改才能正常使用。 因此， 本節將一步一步來介紹如何修改上一章的樣本以正常使用。
4.1. How Things Work
First, this is the sequence of events which occurs when the
 user first types make in the port's
 directory. Having
 bsd.port.mk in another window while
 reading this really helps to understand it.
別太擔心，不是很多人都真的了解 bsd.port.mk 在做什麼... :-)
	The fetch target is run. The
	 fetch target is responsible for
	 making sure that the tarball exists locally in
	 DISTDIR. If
	 fetch cannot find the required
	 files in DISTDIR it will look up the URL
	 MASTER_SITES, which is set in the
	 Makefile, as well as our FTP mirrors where we put distfiles
	 as backup. It will then attempt to fetch the named
	 distribution file with FETCH, assuming
	 that the requesting site has direct access to the Internet.
	 If that succeeds, it will save the file in
	 DISTDIR for future use and
	 proceed.

	The extract target is run.
	 It looks for the port's distribution file (typically a
	 gzipped tarball) in
	 DISTDIR and unpacks it into a temporary
	 subdirectory specified by WRKDIR
	 (defaults to work).

	The patch target is run.
	 First, any patches defined in PATCHFILES
	 are applied. Second, if any patch files named
	 patch-* are
	 found in PATCHDIR (defaults to the
	 files subdirectory), they are applied
	 at this time in alphabetical order.

	The configure target is run.
	 This can do any one of many different things.
	If it exists, scripts/configure
	 is run.

	If HAS_CONFIGURE or
	 GNU_CONFIGURE is set,
	 WRKSRC/configure is run.

	The build target is run.
	 This is responsible for descending into the port's private
	 working directory (WRKSRC) and building
	 it.

	The stage target is run.
	 This puts the final set of built files into a temporary
	 directory (STAGEDIR, see
	 節 6.1, “Staging”). The hierarchy of this directory
	 mirrors that of the system on which the package will be
	 installed.

	The package target is run.
	 This creates a package using the files from the temporary
	 directory created during the
	 stage target and the port's
	 pkg-plist.

	The install target is run.
	 This installs the package created during the
	 package target into the host
	 system.

The above are the default actions. In addition,
 define targets
 pre-something
 or
 post-something,
 or put scripts with those names, in the
 scripts subdirectory, and they will be
 run before or after the default actions are done.
For example, if there is a
 post-extract target defined in the
 Makefile, and a file
 pre-build in the
 scripts subdirectory, the
 post-extract target will be called
 after the regular extraction actions, and
 pre-build will be executed before
 the default build rules are done. It is recommended to
 use Makefile targets if the actions are
 simple enough, because it will be easier for someone to figure
 out what kind of non-default action the port requires.
The default actions are done by the
 do-something
 targets from bsd.port.mk.
 For example, the commands to extract a port are in the target
 do-extract. If
 the default target does not do the job right, redefine the
 do-something
 target in the Makefile.
注意:
The “main” targets (for example,
	extract,
	configure, etc.) do nothing more
	than make sure all the stages up to that one are completed and
	call the real targets or scripts, and they are not intended to
	be changed. To fix the extraction, fix
	do-extract, but never ever change
	the way extract operates!
	Additionally, the target
	post-deinstall is invalid and is
	not run by the ports infrastructure.

Now that what goes on when the user types make
	install is better understood, let us go through the
 recommended steps to create the perfect port.
4.2. 取得原始碼
Get the original sources (normally) as a compressed tarball
 (foo.tar.gz or
 foo.tar.bz2) and
 copy it into DISTDIR. Always use
 mainstream sources when and where
 possible.
Set the variable
 MASTER_SITES to reflect where the original
 tarball resides. Shorthand definitions exist
 for most mainstream sites in bsd.sites.mk.
 Please use these sites—and the associated
 definitions—if at all possible, to help avoid the problem
 of having the same information repeated over again many times in
 the source base. As these sites tend to change over time, this
 becomes a maintenance nightmare for everyone involved. See
 節 5.4.2, “MASTER_SITES” for details.
If there is no FTP/HTTP site that is well-connected to
 the net, or can only find sites that have irritatingly
 non-standard formats, put a copy on a reliable
 FTP or HTTP server (for example, a home
 page).
If a convenient and reliable place to put
 the distfile cannot be found, we can “house” it ourselves on
 ftp.FreeBSD.org; however, this is the
 least-preferred solution. The distfile must be placed into
 ~/public_distfiles/ of someone's
 freefall account. Ask the person who
 commits the port to do this. This person will also set
 MASTER_SITES to
 LOCAL/username
 where username is
 their FreeBSD cluster login.
If the port's distfile changes all the time without any
 kind of version update by the author, consider putting the
 distfile on a home page and listing it as the first
 MASTER_SITES. Try to talk the
 port author out of doing this; it really does help to establish
 some kind of source code control. Hosting a specific version will
 prevent users from getting
 checksum mismatch errors, and also reduce
 the workload of maintainers of our FTP site. Also, if there is
 only one master site for the port, it is recommended to
 house a backup on a home page and list it as the second
 MASTER_SITES.
If the port requires additional patches that are
 available on the Internet, fetch them too and put them in
 DISTDIR. Do not worry if they come from a
 site other than where the main source tarball comes, we have a
 way to handle these situations (see the description of PATCHFILES below).
4.3. Modifying the Port
Unpack a copy of the tarball in a private directory and make
 whatever changes are necessary to get the port to compile
 properly under the current version of FreeBSD. Keep
 careful track of steps, as they will be
 needed to automate the process shortly. Everything, including
 the deletion, addition, or modification of files has to be
 doable using an automated script or patch file when the port is
 finished.
If the port requires significant user
 interaction/customization to compile or install, take
 a look at one of Larry Wall's classic
 Configure scripts and perhaps do
 something similar. The goal of the new ports
 collection is to make each port as “plug-and-play”
 as possible for the end-user while using a minimum of disk
 space.
注意:
Unless explicitly stated, patch files, scripts, and other
	files created and contributed to the FreeBSD ports
	collection are assumed to be covered by the standard BSD
	copyright conditions.

4.4. Patching
In the preparation of the port, files that have been added
 or changed can be recorded with diff(1) for later feeding
 to patch(1). Doing this with a typical file involves
 saving a copy of the original file before making any changes
 using a .orig suffix.
% cp file file.orig
After all changes have been made, cd back
 to the port directory. Use make makepatch to
 generate updated patch files in the files
 directory.
4.4.1. General Rules for Patching
Patch files are stored in PATCHDIR,
	usually files/, from where they will be
	automatically applied. All patches must be relative to
	WRKSRC. Typically
	WRKSRC is a subdirectory of
	WRKDIR, the directory where the distfile is
	extracted. Use make -V WRKSRC to see the
	actual path. The patch names are to follow these
	rules:
	Avoid having more than one patch modify the same file.
	 For example, having both
	 patch-foobar.c and
	 patch-foobar.c2 making changes to
	 ${WRKSRC}/foobar.c makes them fragile
	 and difficult to debug.

	When creating names for patch files, replace each
	 underscore (_) with two underscores
	 (__) and each slash
	 (/) with one underscore
	 (_). For example, to patch a file
	 named src/freeglut_joystick.c, name
	 the corresponding patch
	 patch-src_freeglut__joystick.c. Do
	 not name patches like patch-aa or
	 patch-ab. Always use the path and
	 file name in patch names. Using make
	 makepatch automatically generates the correct
	 names.

	A patch may modify multiple files if the changes are
	 related and the patch is named appropriately. For
	 example,
	 patch-add-missing-stdlib.h.

	Only use characters [-+._a-zA-Z0-9]
	 for naming patches. In particular, do not use
	 :: as a path separator,
	 use _ instead.

Minimize the amount of non-functional whitespace changes
	in patches. It is common in the Open Source world for
	projects to share large amounts of a code base, but obey
	different style and indenting rules. When taking a working
	piece of functionality from one project to fix similar areas
	in another, please be careful: the resulting patch may be full
	of non-functional changes. It not only increases the size of
	the ports repository but makes it hard to find out what
	exactly caused the problem and what was changed at all.
If a file must be deleted, do it in the
	post-extract target rather than as
	part of the patch.
4.4.2. Manual Patch Generation
注意:
Manual patch creation is usually not necessary.
	 Automatic patch generation as described earlier in this
	 section is the preferred method. However, manual patching
	 may be required occasionally.

Patches are saved into files named
	patch-* where
	* indicates the pathname of the
	file that is patched, such as
	patch-Imakefile or
	patch-src-config.h.
After the file has been modified, diff(1) is used to
	record the differences between the original and the modified
	version. -u causes diff(1) to produce
	“unified” diffs, the preferred form.
% diff -u file.orig file > patch-pathname-file
When generating patches for new, added files,
	-N is used to tell diff(1) to treat the
	non-existent original file as if it existed but was
	empty:
% diff -u -N newfile.orig newfile > patch-pathname-newfile
Do not add $FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $ RCS
	strings in patches. When patches are added to the
	Subversion repository with
	svn add, the
	fbsd:nokeywords property is set to
	yes automatically so keywords in the patch
	are not modified when committed. The property can be added
	manually with svn propset fbsd:nokeywords yes
	 files....
Using the recurse (-r) option to
	diff(1) to generate patches is fine, but please look at
	the resulting patches to make sure there is no unnecessary
	junk in there. In particular, diffs between two backup files,
	Makefiles when the port uses
	Imake or GNU configure,
	etc., are unnecessary and have to be deleted. If it was
	necessary to edit configure.in and run
	autoconf to regenerate
	configure, do not take the diffs of
	configure (it often grows to a few thousand
	lines!). Instead, define
	USE_AUTOTOOLS=autoconf:261 and take the
	diffs of configure.in.
4.4.3. Simple Automatic Replacements
Simple replacements can be performed directly from the
	port Makefile using the in-place mode of
	sed(1). This is useful when changes use the value of a
	variable:
post-patch:
	@${REINPLACE_CMD} -e 's|for Linux|for FreeBSD|g' ${WRKSRC}/README
Quite often, software being ported uses the CR/LF
	convention in source files. This may cause problems with
	further patching, compiler warnings, or script execution (like
	/bin/sh^M not found.) To quickly convert
	all files from CR/LF to just LF, add this entry to the port
	Makefile:
USES=	dos2unix
A list of specific files to convert can be given:
USES=	dos2unix
DOS2UNIX_FILES=	util.c util.h
Use DOS2UNIX_REGEX to convert a group
	of files across subdirectories. Its argument is a
	find(1)-compatible regular expression. More on the
	format is in re_format(7). This option is useful for
	converting all files of a given extension. For example,
	convert all source code files, leaving binary files
	intact:
USES=	dos2unix
DOS2UNIX_REGEX=	.*\.([ch]|cpp)
A similar option is DOS2UNIX_GLOB,
	which runs find for each element listed
	in it.
USES=	dos2unix
DOS2UNIX_GLOB=	*.c *.cpp *.h
4.5. 設定
Include any additional customization commands in the
 configure script and save it in the
 scripts subdirectory. As mentioned above,
 it is also possible do this with Makefile targets
 and/or scripts with the name pre-configure
 or post-configure.
4.6. 處理使用者輸入
If the port requires user input to build, configure, or
 install, set IS_INTERACTIVE in the
 Makefile. This will allow
 “overnight builds” to skip it. If the user
 sets the variable BATCH in his environment (and
 if the user sets the variable INTERACTIVE, then
 only those ports requiring interaction are
 built). This will save a lot of wasted time on the set of
 machines that continually build ports (see below).
It is also recommended that if there are reasonable default
 answers to the questions,
 PACKAGE_BUILDING be used to turn off the
 interactive script when it is set. This will allow us to build
 the packages for CDROMs and FTP.
章 5. 設定 Makefile
Configuring the Makefile is pretty
 simple, and again we suggest looking at existing examples
 before starting. Also, there is a
 sample Makefile in this
 handbook, so take a look and please follow the ordering of
 variables and sections in that template to make the port easier
 for others to read.
Consider these problems in sequence during the
 design of the new Makefile:
5.1. The Original Source
Does it live in DISTDIR as a standard
 gzipped tarball named something like
 foozolix-1.2.tar.gz? If so, go on
 to the next step. If not, the distribution file format might
 require overriding one or more of
 DISTVERSION, DISTNAME,
 EXTRACT_CMD,
 EXTRACT_BEFORE_ARGS,
 EXTRACT_AFTER_ARGS,
 EXTRACT_SUFX, or
 DISTFILES.
In the worst case, create a custom
 do-extract target to override the
 default. This is rarely, if ever, necessary.
5.2. 命名
The first part of the port's Makefile
 names the port, describes its version number, and lists it in
 the correct category.
5.2.1. PORTNAME and
	PORTVERSION
Set PORTNAME to the base
	name of the port. Set PORTVERSION to the
	version number of the port unless
	DISTVERSION is used (see
	節 5.4.1, “DISTVERSION/DISTNAME”).
重要:
The package name must be unique across the entire ports
	 tree. Make sure that the PORTNAME is not
	 already in use by an existing port. If the name has already
	 been used, add either
	 PKGNAMEPREFIX
	 or PKGNAMESUFFIX.

5.2.2. PORTREVISION and
	PORTEPOCH
5.2.2.1. PORTREVISION
PORTREVISION is a
	 monotonically increasing value which is reset to 0 with
	 every increase of PORTVERSION, typically
	 every time there is a new official vendor release. If
	 PORTREVISION is non-zero, the value is
	 appended to the package name. Changes to
	 PORTREVISION are used by automated tools
	 like pkg-version(8) to determine that a new package is
	 available.
PORTREVISION must be increased each
	 time a change is made to the port that changes the generated
	 package in any way. That includes changes that only affect
	 a package built with non-default
	 options.
Examples of when PORTREVISION
	 must be bumped:
	Addition of patches to correct security
	 vulnerabilities, bugs, or to add new functionality to
	 the port.

	Changes to the port Makefile to
	 enable or disable compile-time options in the
	 package.

	Changes in the packing list or the install-time
	 behavior of the package. For example, a change to a
	 script which generates initial data for the package,
	 like ssh(1) host keys.

	Version bump of a port's shared library dependency
	 (in this case, someone trying to install the old package
	 after installing a newer version of the dependency will
	 fail since it will look for the old libfoo.x instead of
	 libfoo.(x+1)).

	Silent changes to the port distfile which have
	 significant functional differences. For example,
	 changes to the distfile requiring a correction to
	 distinfo with no corresponding
	 change to PORTVERSION, where a
	 diff -ru of the old and new versions
	 shows non-trivial changes to the code.

Examples of changes which do not require a
	 PORTREVISION bump:
	Style changes to the port skeleton with no
	 functional change to what appears in the resulting
	 package.

	Changes to MASTER_SITES or other
	 functional changes to the port which do not affect the
	 resulting package.

	Trivial patches to the distfile such as correction
	 of typos, which are not important enough that users of
	 the package have to go to the trouble of
	 upgrading.

	Build fixes which cause a package to become
	 compilable where it was previously failing. As long as
	 the changes do not introduce any functional change on
	 any other platforms on which the port did previously
	 build. Since PORTREVISION reflects
	 the content of the package, if the package was not
	 previously buildable then there is no need to increase
	 PORTREVISION to mark a change.

A rule of thumb is to decide whether a change
	 committed to a port is something which
	 some people would benefit from having.
	 Either because of an enhancement, fix,
	 or by virtue that the new package will actually work at
	 all. Then weigh that against that fact that it will cause
	 everyone who regularly updates their ports tree to be
	 compelled to update. If yes,
	 PORTREVISION must be bumped.
注意:
People using binary packages will
	 never see the update if
	 PORTREVISION is not bumped. Without
	 increasing PORTREVISION, the
	 package builders have no way to detect the change and
	 thus, will not rebuild the package.

5.2.2.2. PORTEPOCH
From time to time a software vendor or FreeBSD porter will
	 do something silly and release a version of their software
	 which is actually numerically less than the previous
	 version. An example of this is a port which goes from
	 foo-20000801 to foo-1.0 (the former will be incorrectly
	 treated as a newer version since 20000801 is a numerically
	 greater value than 1).
提示:
The results of version number comparisons are not
	 always obvious. pkg version (see
	 pkg-version(8)) can be used to test the comparison of
	 two version number strings. For example:
% pkg version -t 0.031 0.29
>
The > output indicates that
	 version 0.031 is considered greater than version 0.29,
	 which may not have been obvious to the porter.

In situations such as this,
	 PORTEPOCH must be increased.
	 If PORTEPOCH is nonzero it is appended to
	 the package name as described in section 0 above.
	 PORTEPOCH must never be decreased or
	 reset to zero, because that would cause comparison to a
	 package from an earlier epoch to fail. For example, the
	 package would not be detected as out of date. The new
	 version number, 1.0,1 in the above
	 example, is still numerically less than the previous
	 version, 20000801, but the ,1 suffix is
	 treated specially by automated tools and found to be greater
	 than the implied suffix ,0 on the earlier
	 package.
Dropping or resetting PORTEPOCH
	 incorrectly leads to no end of grief. If the discussion
	 above was not clear enough, please consult the
	 FreeBSD ports mailing list.
It is expected that PORTEPOCH will
	 not be used for the majority of ports, and that sensible use
	 of PORTVERSION can often preempt it
	 becoming necessary if a future release of the software
	 changes the version structure. However, care is
	 needed by FreeBSD porters when a vendor release is made without
	 an official version number — such as a code
	 “snapshot” release. The temptation is to label
	 the release with the release date, which will cause problems
	 as in the example above when a new “official”
	 release is made.
For example, if a snapshot release is made on the date
	 20000917, and the previous version of the
	 software was version 1.2, do not use
	 20000917 for
	 PORTVERSION. The correct way is a
	 PORTVERSION of
	 1.2.20000917, or similar, so that the
	 succeeding release, say 1.3, is still a
	 numerically greater value.
5.2.2.3. PORTREVISION 和 PORTEPOCH 的使用範例
The gtkmumble port, version
	 0.10, is committed to the ports
	 collection:
PORTNAME=	gtkmumble
PORTVERSION=	0.10
PKGNAME 變成 gtkmumble-0.10.
A security hole is discovered which requires a local
	 FreeBSD patch. PORTREVISION is bumped
	 accordingly.
PORTNAME=	gtkmumble
PORTVERSION=	0.10
PORTREVISION=	1
PKGNAME 變成 gtkmumble-0.10_1
A new version is released by the vendor, numbered
	 0.2 (it turns out the author actually
	 intended 0.10 to actually mean
	 0.1.0, not “what comes after
	 0.9” - oops, too late now). Since the new minor
	 version 2 is numerically less than the
	 previous version 10,
	 PORTEPOCH must be bumped to manually
	 force the new package to be detected as
	 “newer”. Since it is a new vendor release of
	 the code, PORTREVISION is reset to 0 (or
	 removed from the Makefile).
PORTNAME=	gtkmumble
PORTVERSION=	0.2
PORTEPOCH=	1
PKGNAME 變成 gtkmumble-0.2,1
The next release is 0.3. Since
	 PORTEPOCH never decreases, the version
	 variables are now:
PORTNAME=	gtkmumble
PORTVERSION=	0.3
PORTEPOCH=	1
PKGNAME 變成 gtkmumble-0.3,1
注意:
If PORTEPOCH were reset to
	 0 with this upgrade, someone who had
	 installed the gtkmumble-0.10_1 package
	 would not detect the gtkmumble-0.3
	 package as newer, since 3 is still
	 numerically less than 10. Remember,
	 this is the whole point of PORTEPOCH in
	 the first place.

5.2.3. PKGNAMEPREFIX 和 PKGNAMESUFFIX
Two optional variables, PKGNAMEPREFIX
	and PKGNAMESUFFIX, are combined with
	PORTNAME and PORTVERSION
	to form PKGNAME as
	${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}.
	Make sure this conforms to our
	guidelines for a good
	 package name. In particular, the use of a
	hyphen (-) in
	PORTVERSION is not
	allowed.
	Also, if the package name has the
	language- or the
	-compiled.specifics part (see
	below), use PKGNAMEPREFIX and
	PKGNAMESUFFIX, respectively. Do not make
	them part of PORTNAME.
5.2.4. 套件命名慣例
These are the conventions to follow when
	naming packages. This is to make the package directory
	easy to scan, as there are already thousands of packages and
	users are going to turn away if they hurt their eyes!
Package names take the form of
	language_region-name-compiled.specifics-version.numbers.
The package name is defined as
	${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}.
	Make sure to set the variables to conform to that
	format.
	language_region-
	FreeBSD strives to support the native language of its
	 users. The language- part is
	 a two letter abbreviation of the natural language
	 defined by ISO-639 when the port is specific to a
	 certain language. Examples are ja
	 for Japanese, ru for Russian,
	 vi for Vietnamese,
	 zh for Chinese, ko
	 for Korean and de for German.
If the port is specific to a certain region within
	 the language area, add the two letter country code as
	 well. Examples are en_US for US
	 English and fr_CH for Swiss
	 French.
The language- part is
	 set in PKGNAMEPREFIX.

	name
	Make sure that the port's name and version are
	 clearly separated and placed into
	 PORTNAME and
	 PORTVERSION. The only
	 reason for PORTNAME to contain a
	 version part is if the upstream distribution is really
	 named that way, as in the
	 textproc/libxml2 or
	 japanese/kinput2-freewnn
	 ports. Otherwise, PORTNAME cannot
	 contain any version-specific information. It is quite
	 normal for several ports to have the same
	 PORTNAME, as the
	 www/apache* ports do; in
	 that case, different versions (and different index
	 entries) are distinguished by
	 PKGNAMEPREFIX
	 and PKGNAMESUFFIX values.
There is a tradition of naming
	 Perl 5 modules by prepending
	 p5- and converting the double-colon
	 separator to a hyphen. For example, the
	 Data::Dumper module becomes
	 p5-Data-Dumper.

	-compiled.specifics
	If the port can be built with different hardcoded defaults
	 (usually part of the directory name in a family of
	 ports), the
	 -compiled.specifics part
	 states the compiled-in defaults. The hyphen is
	 optional. Examples are paper size and font
	 units.
The -compiled.specifics
	 part is set in PKGNAMESUFFIX.

	-version.numbers
	The version string follows a dash
	 (-) and is a period-separated list of
	 integers and single lowercase alphabetics. In
	 particular, it is not permissible to have another dash
	 inside the version string. The only exception is the
	 string pl (meaning
	 “patchlevel”), which can be used
	 only when there are no major and
	 minor version numbers in the software. If the software
	 version has strings like “alpha”,
	 “beta”, “rc”, or
	 “pre”, take the first letter and put it
	 immediately after a period. If the version string
	 continues after those names, the numbers follow
	 the single alphabet without an extra period between
	 them (for example, 1.0b2).
The idea is to make it easier to sort ports by
	 looking at the version string. In particular, make sure
	 version number components are always delimited by a
	 period, and if the date is part of the string, use the
	 0.0.yyyy.mm.dd
	 format, not
	 dd.mm.yyyy
	 or the non-Y2K compliant
	 yy.mm.dd
	 format. It is important to prefix the version with
	 0.0. in case a release with an actual
	 version number is made, which would be
	 numerically less than
	 yyyy.

重要:
Package name must be unique among all of the ports
	 tree, check that there is not already a port with the same
	 PORTNAME and if there is add one of PKGNAMEPREFIX
	 or PKGNAMESUFFIX.

Here are some (real) examples on how to convert the name
	as called by the software authors to a suitable package
	name:
表格 5.1. 套件命名範例
	Distribution Name	PKGNAMEPREFIX	PORTNAME	PKGNAMESUFFIX	PORTVERSION	原因
	mule-2.2.2	(空)	mule	(空)	2.2.2	No changes required
	mule-1.0.1	(空)	mule	1	1.0.1	mule 已存在
	EmiClock-1.0.2	(空)	emiclock	(空)	1.0.2	No uppercase names for single programs
	rdist-1.3alpha	(空)	rdist	(空)	1.3.a	No strings like alpha
		allowed
	es-0.9-beta1	(空)	es	(空)	0.9.b1	No strings like beta
		allowed
	mailman-2.0rc3	(空)	mailman	(空)	2.0.r3	No strings like rc
		allowed
	v3.3beta021.src	(空)	tiff	(空)	3.3	What the heck was that anyway?
	tvtwm	(空)	tvtwm	(空)	pl11	Version string always required
	piewm	(空)	piewm	(空)	1.0	Version string always required
	xvgr-2.10pl1	(空)	xvgr	(空)	2.10.1	pl allowed only when no
		major/minor version numbers
	gawk-2.15.6	ja-	gawk	(空)	2.15.6	日文版
	psutils-1.13	(空)	psutils	-letter	1.13	Paper size hardcoded at package build
		time
	pkfonts	(空)	pkfonts	300	1.0	Package for 300dpi fonts

If there is absolutely no trace of version information in
	the original source and it is unlikely that the original
	author will ever release another version, just set the version
	string to 1.0 (like the
	piewm example above). Otherwise, ask the
	original author or use the date string the source file was
	released on
	(0.0.yyyy.mm.dd)
	as the version.
5.3. 分類
5.3.1. CATEGORIES
When a package is created, it is put under
	/usr/ports/packages/All and links are
	made from one or more subdirectories of
	/usr/ports/packages. The names of these
	subdirectories are specified by the variable
	CATEGORIES. It is intended to make life
	easier for the user when he is wading through the pile of
	packages on the FTP site or the CDROM. Please take a look at
	the current list of
	 categories and pick the ones that are suitable for
	the port.
This list also determines where in the ports tree the port
	is imported. If there is more than one category here,
	the port files must be put in the subdirectory
	with the name of the first category. See
	below for more
	discussion about how to pick the right categories.
5.3.2. 目前分類清單
Here is the current list of port categories. Those marked
	with an asterisk (*) are
	virtual categories—those that do
	not have a corresponding subdirectory in the ports tree. They
	are only used as secondary categories, and only for search
	purposes.
注意:
For non-virtual categories, there is a one-line
	 description in COMMENT in that
	 subdirectory's Makefile.

	分類	描述	註
	accessibility	Ports to help disabled users.	
	afterstep*	Ports to support the AfterStep
		window manager.	
	arabic	阿拉伯文支援。	
	archivers	Archiving tools.	
	astro	Astronomical ports.	
	audio	Sound support.	
	benchmarks	Benchmarking utilities.	
	biology	Biology-related software.	
	cad	Computer aided design tools.	
	chinese	中文支援。	
	comms	Communication software.	Mostly software to talk to the serial
		port.
	converters	Character code converters.	
	databases	資料庫。	
	deskutils	Things that used to be on the desktop before
		computers were invented.	
	devel	開發公用程式。	Do not put libraries here just because they are
		libraries. They should not be
		in this category unless they truly do not belong
		anywhere else.
	dns	DNS 相關軟體。	
	docs*	Meta-ports for FreeBSD documentation.	
	editors	General editors.	Specialized editors go in the section for those
		tools. For example, a mathematical-formula editor
		will go in math, and have
		editors as a second
		category.
	elisp*	Emacs-lisp ports.	
	emulators	Emulators for other operating systems.	Terminal emulators do not
		belong here. X-based ones go to
		x11 and text-based ones to
		either comms or
		misc, depending on the exact
		functionality.
	finance	Monetary, financial and related
		applications.	
	french	法文支援。	
	ftp	FTP client and server
		utilities.	If the port speaks both FTP
		and HTTP, put it
		in ftp with a secondary
		category of www.
	games	遊戲。	
	geography*	地理相關軟體。	
	german	德文支援。	
	gnome*	Ports from the
		GNOME
		Project.	
	gnustep*	Software related to the GNUstep desktop
		environment.	
	graphics	繪圖公用程式。	
	hamradio*	Software for amateur radio.	
	haskell*	Software related to the Haskell
		language.	
	hebrew	希伯來文支援。	
	hungarian	匈牙利文支援。	
	ipv6*	IPv6 相關軟體。	
	irc	Internet Relay Chat utilities.	
	japanese	日文支援。	
	java	Software related to the Java™
		language.	The java category must not
		be the only one for a port. Save for ports directly
		related to the Java language, porters are also
		encouraged not to use java as the
		main category of a port.
	kde*	Ports from the
		KDE
		Project.	
	kld*	Kernel loadable modules.	
	korean	韓文支援。	
	lang	程式語言。	
	linux*	Linux 應用程式和支援的公用程式	
	lisp*	Software related to the Lisp language.	
	mail	郵件軟體	
	math	Numerical computation software and other
		utilities for mathematics.	
	mbone*	MBone 應用程式。	
	misc	其他公用程式	Things that do not belong anywhere
		else. If at all possible, try to find a better
		category for the port than misc,
		as ports tend to be overlooked in here.
	multimedia	多媒體軟體。	
	net	Miscellaneous networking software.	
	net-im	即時通訊軟體。	
	net-mgmt	網路管理軟體。	
	net-p2p	點對點 (Peer to peer) 網路應用程式。	
	news	USENET 新聞軟體。	
	palm	Software support for the Palm™
		series.	
	parallel*	Applications dealing with parallelism in
		computing.	
	pear*	Ports related to the Pear PHP
		framework.	
	perl5*	Ports that require
		Perl version 5 to
		run.	
	plan9*	Various programs from Plan9.	
	polish	波蘭文支援。	
	ports-mgmt	Ports for managing, installing and developing
		FreeBSD ports and packages.	
	portuguese	葡萄牙文支援。	
	print	列印軟體。	Desktop publishing tools
		(previewers, etc.) belong here too.
	python*	Software related to the Python
		language.	
	ruby*	Software related to the Ruby
		language.	
	rubygems*	Ports of RubyGems
		packages.	
	russian	俄文支援。	
	scheme*	Software related to the Scheme
		language.	
	science	Scientific ports that do not fit into other
		categories such as astro,
		biology and
		math.	
	security	Security utilities.	
	shells	Command line shells.	
	spanish*	西班牙文支援。	
	sysutils	系統公用程式。	
	tcl*	Ports that use Tcl to run.	
	textproc	Text processing utilities.	It does not include desktop publishing tools,
		which go to print.
	tk*	Ports that use Tk to run.	
	ukrainian	烏克蘭文支援	
	vietnamese	越南文支援。	
	windowmaker*	Ports to support the WindowMaker window
		manager.	
	www	Software related to the World Wide Web.	HTML language
		support belongs here too.
	x11	X Window 系統和他的朋友們。	This category is only for software that directly
		supports the window system. Do not put regular X
		applications here. Most of them go into other
		x11-* categories (see
		below).
	x11-clocks	X11 時鐘。	
	x11-drivers	X11 驅動程式。	
	x11-fm	X11 file managers.	
	x11-fonts	X11 fonts and font utilities.	
	x11-servers	X11 伺服器。	
	x11-themes	X11 佈景主題。	
	x11-toolkits	X11 toolkits.	
	x11-wm	X11 window managers.	
	xfce*	Ports related to the
		Xfce
		desktop environment.	
	zope*	Zope
		support.	

5.3.3. 選擇正確的目錄
As many of the categories overlap, choosing which of the
	categories will be the primary category of the port can be
	tedious. There are several rules that govern this issue.
	Here is the list of priorities, in decreasing order of
	precedence:
	The first category must be a physical category (see
	 above). This is
	 necessary to make the packaging work. Virtual categories
	 and physical categories may be intermixed after
	 that.

	Language specific categories always come first. For
	 example, if the port installs Japanese X11 fonts, then
	 the CATEGORIES line would read
	 japanese x11-fonts.

	Specific categories are listed before less-specific
	 ones. For instance, an HTML editor is listed as
	 www editors, not the other way
	 around. Also, do not list
	 net when the port belongs to any of
	 irc, mail,
	 news, security,
	 or www, as net
	 is included implicitly.

	x11 is used as a secondary
	 category only when the primary category is a natural
	 language. In particular, do not put
	 x11 in the category line for X
	 applications.

	Emacs modes are
	 placed in the same ports category as the application
	 supported by the mode, not in
	 editors. For example, an
	 Emacs mode to edit source files
	 of some programming language goes into
	 lang.

	Ports installing loadable kernel modules also
	 have the virtual category kld in
	 their CATEGORIES line. This is one of
	 the things handled automatically by adding
	 USES=kmod.

	misc does not appear with any
	 other non-virtual category. If there is
	 misc with something else in
	 CATEGORIES, that means
	 misc can safely be deleted and the port
	 placed only in the other subdirectory.

	If the port truly does not belong anywhere else,
	 put it in misc.

If the category is not clearly defined, please put a
	comment to that effect in the port
	 submission in the bug database so
	we can discuss it before we import it. As a committer,
	send a note to the FreeBSD ports mailing list so we can discuss it
	first. Too often, new ports are imported to the wrong
	category only to be moved right away. This causes unnecessary
	and undesirable bloat in the master source repository.
5.3.4. 提出新的目錄
As the Ports Collection has grown over time, various new
	categories have been introduced. New categories can either be
	virtual categories—those that do
	not have a corresponding subdirectory in the ports tree—
	or physical categories—those that
	do. This section discusses the issues involved in creating a
	new physical category. Read it thouroughly before proposing a
	new one.
Our existing practice has been to avoid creating a new
	physical category unless either a large number of ports would
	logically belong to it, or the ports that would belong to it
	are a logically distinct group that is of limited general
	interest (for instance, categories related to spoken human
	languages), or preferably both.
The rationale for this is that such a change creates a
	fair
	 amount of work for both the committers and also for
	all users who track changes to the Ports Collection. In
	addition, proposed category changes just naturally seem to
	attract controversy. (Perhaps this is because there is no
	clear consensus on when a category is “too big”,
	nor whether categories should lend themselves to browsing (and
	thus what number of categories would be an ideal number), and
	so forth.)
步驟如下：
	Propose the new category on FreeBSD ports mailing list. Include
	 a detailed rationale for the new category,
	 including why the existing categories are not
	 sufficient, and the list of existing ports proposed to
	 move. (If there are new ports pending in
	 Bugzilla that would fit this
	 category, list them too.) If you are the maintainer
	 and/or submitter, respectively, mention that as it may
	 help the case.

	Participate in the discussion.

	If it seems that there is support for the idea, file
	 a PR which includes both the rationale and the list of
	 existing ports that need to be moved. Ideally, this PR
	 would also include these patches:
	Makefiles for the new ports
		once they are repocopied

	Makefile for the new
		category

	Makefile for the old ports'
		categories

	Makefiles for ports that
		depend on the old ports

	(for extra credit, include the other files
		that have to change, as per the procedure in the
		Committer's Guide.)

	Since it affects the ports infrastructure and involves
	 moving and patching many ports but also possibly running
	 regression tests on the build cluster, assign the PR to
	 the Ports Management Team <portmgr@FreeBSD.org>.

	If that PR is approved, a committer will need to
	 follow the rest of the procedure that is outlined
	 in the Committer's Guide.

Proposing a new virtual category is similar to the
	above but much less involved, since no ports will actually
	have to move. In this case, the only patches to include in
	the PR would be those to add the new category to
	CATEGORIES of the affected ports.
5.3.5. Proposing Reorganizing All the Categories
Occasionally someone proposes reorganizing the
	categories with either a 2-level structure, or some other kind
	of keyword structure. To date, nothing has come of any of
	these proposals because, while they are very easy to make, the
	effort involved to retrofit the entire existing ports
	collection with any kind of reorganization is daunting to say
	the very least. Please read the history of these proposals in
	the mailing list archives before posting this idea.
	Furthermore, be prepared to be challenged to offer
	a working prototype.
5.4. The Distribution Files
The second part of the Makefile
 describes the files that must be downloaded to build
 the port, and where they can be downloaded.
5.4.1. DISTVERSION/DISTNAME
DISTNAME is the name of the port as
	called by the authors of the software.
	DISTNAME defaults to
	${PORTNAME}-${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX},
	and DISTVERSION defaults to
	${PORTVERSION} so override it
	only if necessary. DISTNAME is only used
	in two places. First, the distribution file list
	(DISTFILES) defaults to
	${DISTNAME}${EXTRACT_SUFX}.
	Second, the distribution file is expected to extract into a
	subdirectory named WRKSRC, which defaults
	to work/${DISTNAME}.
Some vendor's distribution names which do not fit into the
	${PORTNAME}-${PORTVERSION}-scheme can be
	handled automatically by setting
	DISTVERSION.
	PORTVERSION will be derived from it
	automatically.
注意:
Only one of PORTVERSION and
	 DISTVERSION can be set at a time. If
	 DISTVERSION does not derive a correct
	 PORTVERSION, do not use
	 DISTVERSION, set
	 PORTVERSION to the right value and set
	 DISTNAME with PORTNAME
	 with either some computation of
	 PORTVERSION or the verbatim upstream
	 version.

表格 5.2. Examples of DISTVERSION and the
	 Derived PORTVERSION
	DISTVERSION	PORTVERSION
	0.7.1d	0.7.1.d
	10Alpha3	10.a3
	3Beta7-pre2	3.b7.p2
	8:f_17	8f.17

注意:
PKGNAMEPREFIX and
	 PKGNAMESUFFIX do not affect
	 DISTNAME. Also note that if
	 WRKSRC is equal to
	 ${WRKDIR}/${DISTNAME} while
	 the original source archive is named something other than
	 ${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX},
	 leave DISTNAME
	 alone— defining only
	 DISTFILES is easier than both
	 DISTNAME and WRKSRC
	 (and possibly EXTRACT_SUFX).

5.4.2. MASTER_SITES
Record the directory part of the FTP/HTTP-URL pointing at
	the original tarball in MASTER_SITES. Do
	not forget the trailing slash (/)!
The make macros will try to use this
	specification for grabbing the distribution file with
	FETCH if they cannot find it already on the
	system.
It is recommended that multiple sites are included on this
	list, preferably from different continents. This will
	safeguard against wide-area network problems. We are even
	planning to add support for automatically determining the
	closest master site and fetching from there; having multiple
	sites will go a long way towards helping this effort.
重要:
MASTER_SITES must not be blank. It
	 must point to the actual site hosting the distribution
	 files. It cannot point to web archives, or the FreeBSD
	 distribution files cache sites. The only exception to this
	 rule is ports that do not have any distribution files. For
	 example, meta-ports do not have any distribution files, so
	 MASTER_SITES does not need to be
	 set.

5.4.2.1. 使用 MASTER_SITE_* 變數
Shortcut abbreviations are available for popular
	 archives like SourceForge (SOURCEFORGE),
	 GNU (GNU), or Perl CPAN
	 (PERL_CPAN).
	 MASTER_SITES can use them
	 directly:
MASTER_SITES=	GNU/make
The older expanded format still works, but all ports
	 have been converted to the compact format. The expanded
	 format looks like this:
MASTER_SITES=		${MASTER_SITE_GNU}
MASTER_SITE_SUBDIR=	make
These values and variables are defined in Mk/bsd.sites.mk.
	 New entries are added often, so make sure to check the
	 latest version of this file before submitting a port.
提示:
For any
	 MASTER_SITE_FOO
	 variable, the shorthand
	 FOO can be
	 used. For example, use:
MASTER_SITES=	FOO
If MASTER_SITE_SUBDIR is needed,
	 use this:
MASTER_SITES=	FOO/bar

注意:
Some
	 MASTER_SITE_*
	 names are quite long, and for ease of use, shortcuts have
	 been defined:
表格 5.3. Shortcuts for
	 MASTER_SITE_*
	 Macros
	巨集	Shortcut
	PERL_CPAN	CPAN
	GITHUB	GH
	GITHUB_CLOUD	GHC
	LIBREOFFICE_DEV	LODEV
	NETLIB	NL
	RUBYGEMS	RG
	SOURCEFORGE	SF
	SOURCEFORGE_JP	SFJP

5.4.2.2. Magic MASTER_SITES Macros
Several “magic” macros exist for
	 popular sites with a predictable directory structure. For
	 these, just use the abbreviation and the system will choose
	 a subdirectory automatically. For a port
	 named Stardict, of version
	 1.2.3, and hosted on SourceForge, adding
	 this line:
MASTER_SITES=	SF
infers a subdirectory named
	 /project/stardict/stardict/1.2.3. If the
	 inferred directory is incorrect, it can be
	 overridden:
MASTER_SITES=	SF/stardict/WyabdcRealPeopleTTS/${PORTVERSION}
This can also be written as
MASTER_SITES=	SF
MASTER_SITE_SUBDIR=	stardict/WyabdcRealPeopleTTS/${PORTVERSION}
表格 5.4. Magic MASTER_SITES
	 Macros
	巨集	Assumed subdirectory
	APACHE_COMMONS_BINARIES	${PORTNAME:S,commons-,,}
	APACHE_COMMONS_SOURCE	${PORTNAME:S,commons-,,}
	APACHE_JAKARTA	${PORTNAME:S,-,/,}/source
	BERLIOS	${PORTNAME:tl}.berlios
	CHEESESHOP	source/${DISTNAME:C/(.).*/\1/}/${DISTNAME:C/(.*)-[0-9].*/\1/}
	CPAN	${PORTNAME:C/-.*//}
	DEBIAN	pool/main/${PORTNAME:C/^((lib)?.).*$/\1/}/${PORTNAME}
	FARSIGHT	${PORTNAME}
	FESTIVAL	${PORTREVISION}
	GCC	releases/${DISTNAME}
	GENTOO	distfiles
	GIMP	${PORTNAME}/${PORTVERSION:R}/
	GH	${GH_ACCOUNT}/${GH_PROJECT}/tar.gz/${GH_TAGNAME}?dummy=/
	GHC	${GH_ACCOUNT}/${GH_PROJECT}/
	GNOME	sources/${PORTNAME}/${PORTVERSION:C/^([0-9]+\.[0-9]+).*/\1/}
	GNU	${PORTNAME}
	GNUPG	${PORTNAME}
	GNU_ALPHA	${PORTNAME}
	HORDE	${PORTNAME}
	LODEV	${PORTNAME}
	MATE	${PORTVERSION:C/^([0-9]+\.[0-9]+).*/\1/}
	MOZDEV	${PORTNAME:tl}
	NL	${PORTNAME}
	QT	archive/qt/${PORTVERSION:R}
	SAMBA	${PORTNAME}
	SAVANNAH	${PORTNAME:tl}
	SF	${PORTNAME:tl}/${PORTNAME:tl}/${PORTVERSION}

5.4.3. USE_GITHUB
If the distribution file comes from a specific commit or
	tag on GitHub
	for which there is no officially released file, there is an
	easy way to set the right DISTNAME and
	MASTER_SITES automatically. These
	variables are available:
表格 5.5. USE_GITHUB Description
	Variable	描述	Default
	GH_ACCOUNT	Account name of the GitHub user hosting the
		project	${PORTNAME}
	GH_PROJECT	Name of the project on GitHub	${PORTNAME}
	GH_TAGNAME	Name of the tag to download (2.0.1, hash, ...)
		Using the name of a branch here is incorrect. It is
		also possible to use the hash of a commit id to do a
		snapshot.	${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX}
	GH_TUPLE	GH_TUPLE allows putting all
		the GH_ACCOUNT,
		GH_PROJECT, and
		GH_TAGNAME into one variable. The
		format is
		account:project:tagname:group.
		It is helpful when there is more than one GitHub
		project from which to fetch.	

重要:
Do not use GH_TUPLE for the default
	 distribution file, as it has no default.

範例 5.1. Simple Use of USE_GITHUB
While trying to make a port for version
	 1.2.7 of pkg
	 from the FreeBSD user on github, at https://github.com/freebsd/pkg, The
	 Makefile would end up looking like
	 this (slightly stripped for the example):
PORTNAME=	pkg
PORTVERSION=	1.2.7

USE_GITHUB=	yes
GH_ACCOUNT=	freebsd
It will automatically have
	 MASTER_SITES set to GH
	 GHC and WRKSRC to
	 ${WRKDIR}/pkg-1.2.7.

範例 5.2. More Complete Use of
	 USE_GITHUB
While trying to make a port for the bleeding edge
	 version of pkg from the FreeBSD
	 user on github, at https://github.com/freebsd/pkg, the
	 Makefile ends up looking like
	 this (slightly stripped for the example):
PORTNAME=	pkg-devel
PORTVERSION=	1.3.0.a.20140411

USE_GITHUB=	yes
GH_ACCOUNT=	freebsd
GH_PROJECT=	pkg
GH_TAGNAME=	6dbb17b
It will automatically have
	 MASTER_SITES set to GH
	 GHC and WRKSRC to
	 ${WRKDIR}/pkg-6dbb17b.

範例 5.3. Use of USE_GITHUB with
	 DISTVERSIONPREFIX
From time to time, GH_TAGNAME is a
	 slight variation from DISTVERSION.
	 For example, if the version is 1.0.2,
	 the tag is v1.0.2. In those cases, it
	 is possible to use DISTVERSIONPREFIX or
	 DISTVERSIONSUFFIX:
PORTNAME=	foo
PORTVERSION=	1.0.2
DISTVERSIONPREFIX=	v

USE_GITHUB=	yes
It will automatically set
	 GH_TAGNAME to
	 v1.0.2, while WRKSRC
	 will be kept to
	 ${WRKDIR}/foo-1.0.2.

5.4.3.1. Fetching Multiple Files from GitHub
The USE_GITHUB framework also
	 supports fetching multiple distribution files from
	 different places in GitHub. It works in a way very
	 similar to 節 5.4.8, “Multiple Distribution or Patches Files from Multiple
	Locations”.
Multiple values are added to
	 GH_ACCOUNT,
	 GH_PROJECT, and
	 GH_TAGNAME. Each different value is
	 assigned a tag. The main value can either have no tag, or
	 the :DEFAULT tag. A value can be
	 omitted if it is the same as the default as listed in
	 表格 5.5, “USE_GITHUB Description”.
GH_TUPLE can also be used when there
	 are a lot of distribution files. It helps keep the account,
	 project, tagname, and group information at the same
	 place.
For each tag, a
	 ${WRKSRC_tag}
	 helper variable is created, containing the directory into
	 which the file has been extracted. The
	 ${WRKSRC_tag}
	 variables can be used to move directories around during
	 post-extract, or add to
	 CONFIGURE_ARGS, or whatever is needed
	 so that the software builds correctly.
範例 5.4. Use of USE_GITHUB with Multiple
	 Distribution Files
From time to time, there is a need to fetch more
	 than one distribution file. For example, when the
	 upstream git repository uses submodules. This can be
	 done easily using tags in the
	 GH_*
	 variables:
PORTNAME=	foo
PORTVERSION=	1.0.2

USE_GITHUB=	yes
GH_ACCOUNT=	bar:icons,contrib
GH_PROJECT=	foo-icons:icons foo-contrib:contrib
GH_TAGNAME=	1.0:icons fa579bc:contrib

CONFIGURE_ARGS=	--with-contrib=${WRKSRC_contrib}

post-extract:
 @${MV} ${WRKSRC_icons} ${WRKSRC}/icons
This will fetch three distribution files from
	 github. The default one comes from
	 foo/foo and is version
	 1.0.2. The second one, tagged
	 icons, comes from
	 bar/foo-icons and is in version
	 1.0. The third one comes from
	 bar/foo-contrib and uses the
	 Git commit
	 fa579bc. The distribution files are
	 named foo-foo-1.0.2_GH0.tar.gz,
	 bar-foo-icons-1.0_GH0.tar.gz, and
	 bar-foo-contrib-fa579bc_GH0.tar.gz.
All the distribution files are extracted in
	 ${WRKDIR} in their respective
	 subdirectories. The default file is still extracted in
	 ${WRKSRC}, in this case,
	 ${WRKDIR}/foo-1.0.2. Each
	 additional distribution file is extracted in
	 ${WRKSRC_tag}.
	 Here, for the icons tag, it is called
	 ${WRKSRC_icons} and it contains
	 ${WRKDIR}/foo-icons-1.0. The file
	 with the contrib tag is called
	 ${WRKSRC_contrib} and contains
	 ${WRKDIR}/foo-contrib-fa579bc.

範例 5.5. Use of USE_GITHUB with Multiple
	 Distribution Files Using
	 GH_TUPLE
This is functionally equivalent to 範例 5.4, “Use of USE_GITHUB with Multiple
	 Distribution Files”, but
	 using GH_TUPLE:
PORTNAME=	foo
PORTVERSION=	1.0.2

USE_GITHUB=	yes
GH_TUPLE=	bar:foo-icons:1.0:icons \
		bar:foo-contrib:fa579bc:contrib

CONFIGURE_ARGS=	--with-contrib=${WRKSRC_contrib}

post-extract:
 @${MV} ${WRKSRC_icons} ${WRKSRC}/icons
Grouping was used in the previous example with
	 bar:icons,contrib. Some redundant
	 information is present with GH_TUPLE
	 because grouping is not possible.

5.4.4. EXTRACT_SUFX
If there is one distribution file, and it uses an odd
	suffix to indicate the compression mechanism, set
	EXTRACT_SUFX.
For example, if the distribution file was named
	foo.tar.gzip instead of the more normal
	foo.tar.gz, write:
DISTNAME=	foo
EXTRACT_SUFX=	.tar.gzip
The
	USES=tar[:xxx],
	USES=lha or USES=zip
	automatically set EXTRACT_SUFX to the most
	common archives extensions as necessary, see 章 15, Using USES
 Macros for more details. If neither of
	these are set then EXTRACT_SUFX defaults to
	.tar.gz.
注意:
As EXTRACT_SUFX is only used in
	 DISTFILES, only set one of them..

5.4.5. DISTFILES
Sometimes the names of the files to be downloaded have no
	resemblance to the name of the port. For example, it might be
	called source.tar.gz or similar. In
	other cases the application's source code might be in several
	different archives, all of which must be downloaded.
If this is the case, set DISTFILES to
	be a space separated list of all the files that must be
	downloaded.
DISTFILES=	source1.tar.gz source2.tar.gz
If not explicitly set, DISTFILES
	defaults to
	${DISTNAME}${EXTRACT_SUFX}.
5.4.6. EXTRACT_ONLY
If only some of the DISTFILES must be
	extracted—for example, one of them is the source code,
	while another is an uncompressed document—list the
	filenames that must be extracted in
	EXTRACT_ONLY.
DISTFILES=	source.tar.gz manual.html
EXTRACT_ONLY=	source.tar.gz
When none of the DISTFILES need to be
	uncompressed, set EXTRACT_ONLY to the empty
	string.
EXTRACT_ONLY=
5.4.7. PATCHFILES
If the port requires some additional patches that are
	available by FTP or
	HTTP, set PATCHFILES to
	the names of the files and PATCH_SITES to
	the URL of the directory that contains them (the format is the
	same as MASTER_SITES).
If the patch is not relative to the top of the source tree
	(that is, WRKSRC) because it contains some
	extra pathnames, set PATCH_DIST_STRIP
	accordingly. For instance, if all the pathnames in the patch
	have an extra foozolix-1.0/ in front of the
	filenames, then set
	PATCH_DIST_STRIP=-p1.
Do not worry if the patches are compressed; they will be
	decompressed automatically if the filenames end with
	.Z, .gz,
	.bz2 or .xz.
If the patch is distributed with some other files, such as
	documentation, in a gzipped tarball, using
	PATCHFILES is not possible. If that is the
	case, add the name and the location of the patch tarball to
	DISTFILES and
	MASTER_SITES. Then, use
	EXTRA_PATCHES to point to those
	files and bsd.port.mk will automatically
	apply them. In particular, do
	not copy patch files into
	${PATCHDIR}. That directory may
	not be writable.
提示:
If there are multiple patches and they need mixed values
	 for the strip parameter, it can be added alongside the patch
	 name in PATCHFILES, e.g:
PATCHFILES=	patch1 patch2:-p1
This does not conflict with the master site grouping
	 feature, adding a group also works:
PATCHFILES=	patch2:-p1:source2

注意:
The tarball will have been extracted alongside the
	 regular source by then, so there is no need to explicitly
	 extract it if it is a regular gzipped or
	 compressed tarball. Take extra care not
	 to overwrite something that already exists in that
	 directory if extracting it manually. Also, do not forget to
	 add a command to remove the copied patch in the
	 pre-clean target.

5.4.8. Multiple Distribution or Patches Files from Multiple
	Locations
(Consider this to be a somewhat
	“advanced topic”; those new to this document
	may wish to skip this section at first).
This section has information on the fetching mechanism
	known as both MASTER_SITES:n and
	MASTER_SITES_NN. We will refer to this
	mechanism as MASTER_SITES:n.
A little background first. OpenBSD has a neat feature
	inside DISTFILES and
	PATCHFILES which allows files and
	patches to be postfixed with :n
	identifiers. Here, n can be both
	[0-9] and denote a group designation. For
	example:
DISTFILES=	alpha:0 beta:1
In OpenBSD, distribution file alpha
	will be associated with variable
	MASTER_SITES0 instead of our common
	MASTER_SITES and
	beta with
	MASTER_SITES1.
This is a very interesting feature which can decrease
	that endless search for the correct download site.
Just picture 2 files in DISTFILES and
	20 sites in MASTER_SITES, the sites slow as
	hell where beta is carried by all sites
	in MASTER_SITES, and
	alpha can only be found in the 20th site.
	It would be such a waste to check all of them if the
	maintainer knew this beforehand, would it not? Not a good
	start for that lovely weekend!
Now that you have the idea, just imagine more
	DISTFILES and more
	MASTER_SITES. Surely our
	“distfiles survey meister” would appreciate the
	relief to network strain that this would bring.
In the next sections, information will follow on the
	FreeBSD implementation of this idea. We improved a bit on
	OpenBSD's concept.
5.4.8.1. Simplified Information
This section explains how to quickly prepare fine
	 grained fetching of multiple distribution files and patches
	 from different sites and subdirectories. We describe here a
	 case of simplified MASTER_SITES:n usage.
	 This will be sufficient for most scenarios. More detailed
	 information are available in 節 5.4.8.2, “Detailed Information”.
Some applications consist of multiple distribution files
	 that must be downloaded from a number of different sites.
	 For example, Ghostscript consists
	 of the core of the program, and then a large number of
	 driver files that are used depending on the user's printer.
	 Some of these driver files are supplied with the core, but
	 many others must be downloaded from a variety of different
	 sites.
To support this, each entry in
	 DISTFILES may be followed by a colon and
	 a “tag name”. Each site listed in
	 MASTER_SITES is then followed by a colon,
	 and the tag that indicates which distribution files are
	 downloaded from this site.
For example, consider an application with the source
	 split in two parts, source1.tar.gz and
	 source2.tar.gz, which must be
	 downloaded from two different sites. The port's
	 Makefile would include lines like 範例 5.6, “Simplified Use of MASTER_SITES:n
	 with One File Per Site”.
範例 5.6. Simplified Use of MASTER_SITES:n
	 with One File Per Site
MASTER_SITES=	ftp://ftp1.example.com/:source1 \
		http://www.example.com/:source2
DISTFILES=	source1.tar.gz:source1 \
		source2.tar.gz:source2

Multiple distribution files can have the same tag.
	 Continuing the previous example, suppose that there was a
	 third distfile, source3.tar.gz, that
	 is downloaded from
	 ftp.example2.com. The
	 Makefile would then be written like
	 範例 5.7, “Simplified Use of MASTER_SITES:n
	 with More Than One File Per Site”.
範例 5.7. Simplified Use of MASTER_SITES:n
	 with More Than One File Per Site
MASTER_SITES=	ftp://ftp.example.com/:source1 \
		http://www.example.com/:source2
DISTFILES=	source1.tar.gz:source1 \
		source2.tar.gz:source2 \
		source3.tar.gz:source2

5.4.8.2. Detailed Information
Okay, so the previous example did not reflect the new
	 port's needs? In this section we will explain in detail how
	 the fine grained fetching mechanism
	 MASTER_SITES:n works and how it can
	 be used.
	Elements can be postfixed with
	 :n where
	 n is
	 [^:,]+, that is,
	 n could conceptually be any
	 alphanumeric string but we will limit it to
	 [a-zA-Z_][0-9a-zA-Z_]+ for
	 now.
Moreover, string matching is case sensitive; that
	 is, n is different from
	 N.
However, these words cannot be used for
	 postfixing purposes since they yield special meaning:
	 default, all and
	 ALL (they are used internally in
	 item ii).
	 Furthermore, DEFAULT is a special
	 purpose word (check item 3).

	Elements postfixed with :n
	 belong to the group n,
	 :m belong to group
	 m and so forth.

	Elements without a postfix are groupless, they
	 all belong to the special group
	 DEFAULT. Any elements postfixed
	 with DEFAULT, is just being
	 redundant unless an element belongs
	 to both DEFAULT and other groups at
	 the same time (check item 5).
These examples are equivalent but the first
	 one is preferred:
MASTER_SITES=	alpha
MASTER_SITES=	alpha:DEFAULT

	Groups are not exclusive, an element may belong to
	 several different groups at the same time and a group
	 can either have either several different elements or
	 none at all.

	When an element belongs to several groups
	 at the same time, use the comma operator
	 (,).
Instead of repeating it several times, each time
	 with a different postfix, we can list several groups at
	 once in a single postfix. For instance,
	 :m,n,o marks an element that belongs
	 to group m, n and
	 o.
All these examples are equivalent but the
	 last one is preferred:
MASTER_SITES=	alpha alpha:SOME_SITE
MASTER_SITES=	alpha:DEFAULT alpha:SOME_SITE
MASTER_SITES=	alpha:SOME_SITE,DEFAULT
MASTER_SITES=	alpha:DEFAULT,SOME_SITE

	All sites within a given group are sorted according
	 to MASTER_SORT_AWK. All groups
	 within MASTER_SITES and
	 PATCH_SITES are sorted as
	 well.

	Group semantics can be used in any of the
	 variables MASTER_SITES,
	 PATCH_SITES,
	 MASTER_SITE_SUBDIR,
	 PATCH_SITE_SUBDIR,
	 DISTFILES, and
	 PATCHFILES according to this
	 syntax:
	All MASTER_SITES,
		 PATCH_SITES,
		 MASTER_SITE_SUBDIR and
		 PATCH_SITE_SUBDIR elements must
		 be terminated with the forward slash
		 / character. If any elements
		 belong to any groups, the group postfix
		 :n
		 must come right after the terminator
		 /. The
		 MASTER_SITES:n mechanism relies
		 on the existence of the terminator
		 / to avoid confusing elements
		 where a :n is a valid part of the
		 element with occurrences where :n
		 denotes group n. For
		 compatibility purposes, since the
		 / terminator was not required
		 before in both MASTER_SITE_SUBDIR
		 and PATCH_SITE_SUBDIR elements,
		 if the postfix immediate preceding character is not
		 a / then :n
		 will be considered a valid part of the element
		 instead of a group postfix even if an element is
		 postfixed with :n. See both
		 範例 5.8, “Detailed Use of
		 MASTER_SITES:n in
		 MASTER_SITE_SUBDIR”
		 and 範例 5.9, “Detailed Use of
		 MASTER_SITES:n with Comma
		 Operator, Multiple Files, Multiple Sites and
		 Multiple Subdirectories”.
範例 5.8. Detailed Use of
		 MASTER_SITES:n in
		 MASTER_SITE_SUBDIR
MASTER_SITE_SUBDIR=	old:n new/:NEW
	Directories within group
			DEFAULT ->
			old:n

	Directories within group
			NEW -> new

範例 5.9. Detailed Use of
		 MASTER_SITES:n with Comma
		 Operator, Multiple Files, Multiple Sites and
		 Multiple Subdirectories
MASTER_SITES=	http://site1/%SUBDIR%/ http://site2/:DEFAULT \
		http://site3/:group3 http://site4/:group4 \
		http://site5/:group5 http://site6/:group6 \
		http://site7/:DEFAULT,group6 \
		http://site8/%SUBDIR%/:group6,group7 \
		http://site9/:group8
DISTFILES=	file1 file2:DEFAULT file3:group3 \
		file4:group4,group5,group6 file5:grouping \
		file6:group7
MASTER_SITE_SUBDIR=	directory-trial:1 directory-n/:groupn \
		directory-one/:group6,DEFAULT \
		directory
The previous example results in this
		 fine grained fetching. Sites are listed in the
		 exact order they will be used.
	file1 will be
			fetched from
	MASTER_SITE_OVERRIDE

	http://site1/directory-trial:1/

	http://site1/directory-one/

	http://site1/directory/

	http://site2/

	http://site7/

	MASTER_SITE_BACKUP

	file2 will be fetched
			exactly as file1 since
			they both belong to the same group
	MASTER_SITE_OVERRIDE

	http://site1/directory-trial:1/

	http://site1/directory-one/

	http://site1/directory/

	http://site2/

	http://site7/

	MASTER_SITE_BACKUP

	file3 will be fetched
			from
	MASTER_SITE_OVERRIDE

	http://site3/

	MASTER_SITE_BACKUP

	file4 will be
			fetched from
	MASTER_SITE_OVERRIDE

	http://site4/

	http://site5/

	http://site6/

	http://site7/

	http://site8/directory-one/

	MASTER_SITE_BACKUP

	file5 will be fetched
			from
	MASTER_SITE_OVERRIDE

	MASTER_SITE_BACKUP

	file6 will be fetched
			from
	MASTER_SITE_OVERRIDE

	http://site8/

	MASTER_SITE_BACKUP

	How do I group one of the special macros from
	 bsd.sites.mk, for example,
	 SourceForge (SF)?
This has been simplified as much as possible. See
	 範例 5.10, “Detailed Use of MASTER_SITES:n
		with SourceForge (SF)”.
範例 5.10. Detailed Use of MASTER_SITES:n
		with SourceForge (SF)
MASTER_SITES=	http://site1/ SF/something/1.0:sourceforge,TEST
DISTFILES=	something.tar.gz:sourceforge
something.tar.gz will be
		fetched from all sites within SourceForge.

	How do I use this with
	 PATCH*?
All examples were done with
	 MASTER*
	 but they work exactly the same for
	 PATCH*
	 ones as can be seen in 範例 5.11, “Simplified Use of
		MASTER_SITES:n with
		PATCH_SITES”.
範例 5.11. Simplified Use of
		MASTER_SITES:n with
		PATCH_SITES
PATCH_SITES=	http://site1/ http://site2/:test
PATCHFILES=	patch1:test

5.4.8.3. What Does Change for Ports? What Does Not?
	All current ports remain the same. The
	 MASTER_SITES:n feature code is only
	 activated if there are elements postfixed with
	 :n like
	 elements according to the aforementioned syntax rules,
	 especially as shown in item 7.

	The port targets remain the same:
	 checksum,
	 makesum,
	 patch,
	 configure,
	 build, etc. With the obvious
	 exceptions of do-fetch,
	 fetch-list,
	 master-sites and
	 patch-sites.
	do-fetch: deploys
		 the new grouping postfixed
		 DISTFILES and
		 PATCHFILES with their matching
		 group elements within both
		 MASTER_SITES and
		 PATCH_SITES which use matching
		 group elements within both
		 MASTER_SITE_SUBDIR and
		 PATCH_SITE_SUBDIR. Check 範例 5.9, “Detailed Use of
		 MASTER_SITES:n with Comma
		 Operator, Multiple Files, Multiple Sites and
		 Multiple Subdirectories”.

	fetch-list: works
		 like old fetch-list with
		 the exception that it groups just like
		 do-fetch.

	master-sites and
		 patch-sites:
		 (incompatible with older versions) only return the
		 elements of group DEFAULT; in
		 fact, they execute targets
		 master-sites-default and
		 patch-sites-default
		 respectively.
Furthermore, using target either
		 master-sites-all or
		 patch-sites-all is
		 preferred to directly checking either
		 MASTER_SITES or
		 PATCH_SITES. Also,
		 directly checking is not guaranteed to work in any
		 future versions. Check item B
		 for more information on these new port
		 targets.

	New port targets
	There are
		 master-sites-n
		 and
		 patch-sites-n
		 targets which will list the elements of the
		 respective group n
		 within MASTER_SITES and
		 PATCH_SITES respectively. For
		 instance, both
		 master-sites-DEFAULT
		 and patch-sites-DEFAULT
		 will return the elements of group
		 DEFAULT,
		 master-sites-test and
		 patch-sites-test of
		 group test, and thereon.

	There are new targets
		 master-sites-all and
		 patch-sites-all which do
		 the work of the old
		 master-sites and
		 patch-sites ones. They
		 return the elements of all groups as if they all
		 belonged to the same group with the caveat that it
		 lists as many MASTER_SITE_BACKUP
		 and MASTER_SITE_OVERRIDE as there
		 are groups defined within either
		 DISTFILES or
		 PATCHFILES; respectively for
		 master-sites-all and
		 patch-sites-all.

5.4.9. DIST_SUBDIR
Do not let the port clutter
	/usr/ports/distfiles. If the port
	requires a lot of files to be fetched, or contains a file that
	has a name that might conflict with other ports (for example,
	Makefile), set
	DIST_SUBDIR to the name of the port
	(${PORTNAME} or
	${PKGNAMEPREFIX}${PORTNAME} are
	fine). This will change DISTDIR from the
	default /usr/ports/distfiles to
	/usr/ports/distfiles/${DIST_SUBDIR}, and
	in effect puts everything that is required for the port into
	that subdirectory.
It will also look at the subdirectory with the same name
	on the backup master site at
	ftp.FreeBSD.org. (Setting
	DISTDIR explicitly in
	Makefile will not accomplish this, so
	please use DIST_SUBDIR.)
注意:
This does not affect
	 MASTER_SITES defined in the
	 Makefile.

5.4.10. ALWAYS_KEEP_DISTFILES
If the port uses binary distfiles and has a license that
	requires that the source code is provided with packages
	distributed in binary form, like GPL,
	ALWAYS_KEEP_DISTFILES will instruct the
	FreeBSD build cluster to keep a copy of the files specified in
	DISTFILES. Users of these ports will
	generally not need these files, so it is a good idea to only
	add the source distfiles to DISTFILES when
	PACKAGE_BUILDING is defined.
範例 5.12. Use of
	 ALWAYS_KEEP_DISTFILES
.if defined(PACKAGE_BUILDING)
DISTFILES+=		foo.tar.gz
ALWAYS_KEEP_DISTFILES=	yes
.endif

When adding extra files to DISTFILES,
	make sure to also add them to distinfo.
	Also, the additional files will normally be extracted into
	WRKDIR as well, which for some ports may
	lead to undesirable side effects and require special
	handling.
5.5. MAINTAINER
 請在這裡設定你的 email 地址:-)
Only a single address without the comment part is
 allowed as a MAINTAINER value. The format
 used is user@hostname.domain. Please
 do not include any descriptive text such as a real name in
 this entry. That merely confuses the Ports infrastructure
 and most tools using it.
The maintainer is responsible for keeping the port up to
 date and making sure that it works correctly. For a detailed
 description of the responsibilities of a port maintainer, refer
 to The
	challenge for port maintainers.
注意:
A maintainer volunteers to keep a port in good working
	order. Maintainers have the primary responsibility for their
	ports, but not exclusive ownership. Ports exist for the
	benefit of the community and, in reality, belong to the
	community. What this means is that people other than the
	maintainer can make changes to a port. Large changes to the
	Ports Collection might require changes to many ports. The
	FreeBSD Ports Management Team or members of other teams might
	modify ports to fix dependency issues or other problems, like
	a version bump for a shared library update.
Some types of fixes have “blanket approval”
	from the Ports Management Team <portmgr@FreeBSD.org>, allowing any committer to fix those
	categories of problems on any port. These fixes do not need
	approval from the maintainer. Blanket approval does not apply
	to ports that are maintained by teams like <autotools@FreeBSD.org>, <x11@FreeBSD.org>, <gnome@FreeBSD.org>, or <kde@FreeBSD.org>. These teams use
	external repositories and can have work that would conflict
	with changes that would normally fall under blanket
	approval.
Blanket approval for most ports applies to these types of
	fixes:
	Most infrastructure changes to a port (that is,
	 modernizing, but not changing the functionality). For
	 example, converting to staging,
	 USE_GMAKE to
	 USES=gmake, the new
	 LIB_DEPENDS format...

	Trivial and tested build and
	 runtime fixes.

Other changes to the port will be sent to the maintainer
 for review and approval before being committed. If the
 maintainer does not respond to an update request after two weeks
 (excluding major public holidays), then that is considered a
 maintainer timeout, and the update may be made without explicit
 maintainer approval. If the maintainer does not respond within
 three months, or if there have been three consecutive timeouts,
 then that maintainer is considered absent without
 leave, and can be replaced as the maintainer of the particular
 port in question. Exceptions to this are anything maintained by
 the Ports Management Team <portmgr@FreeBSD.org>, or the Security Officer Team <security-officer@FreeBSD.org>. No unauthorized
 commits may ever be made to ports maintained by those
 groups.
We reserve the right to modify the maintainer's submission
 to better match existing policies and style of the Ports
 Collection without explicit blessing from the submitter or the
 maintainer. Also,
 large infrastructural changes can result in a port being
 modified without the maintainer's consent. These kinds of
 changes will never affect the port's functionality.
The Ports Management Team <portmgr@FreeBSD.org> reserves the right to revoke or override
 anyone's maintainership for any reason, and the
 Security Officer Team <security-officer@FreeBSD.org> reserves the right to revoke or override
 maintainership for security reasons.
5.6. COMMENT
這是關於這個 port的一行描述。請遵守這些原則：
	Try to keep the COMMENT value at no longer than 70
	 characters, as this line will be used by
	 pkg info (see pkg-info(8)) to
	 display a one-line summary of the port;

	Do not include the package name (or
	 version number of the software);

	The comment must begin with a capital and end without
	 a period;

	Do not start with an indefinite article (that is, A or
	 An);

	名字首字大寫 (例如， Apache, JavaScript, Perl)；

	For lists of words, use the Oxford comma (for example,
	 green, red, and blue);

	請檢查拼字。

以下是範例：
COMMENT=	Cat chasing a mouse all over the screen
The COMMENT variable immediately follows the
 MAINTAINER variable in the Makefile.
5.7. PORTSCOUT
Portscout is an automated
 distfile check utility for the FreeBSD Ports Collection,
 described in detail in 節 14.5, “Portscout: the FreeBSD Ports Distfile Scanner”.
PORTSCOUT defines special
 conditions within which the Portscout
 distfile scanner is restricted.
Situations where PORTSCOUT
 is set include:
	When distfiles have to be ignored, whether for specific
	 versions, or specific minor revisions. For example, to
	 exclude version 8.2 from distfile
	 version checks because it is known to be broken, add:
PORTSCOUT=	ignore:8.2

	When specific versions or specific major and minor
	 revisions of a distfile must be checked. For example, if
	 only version 0.6.4 must be
	 monitored because newer versions have compatibility issues
	 with FreeBSD, add:
PORTSCOUT=	limit:^0\.6\.4

	When URLs listing the available versions differ from the
	 download URLs. For example, to limit distfile version
	 checks to the download page for the
	 databases/pgtune port,
	 add:
PORTSCOUT=	site:http://pgfoundry.org/frs/?group_id=1000416

5.8. 相依性
Many ports depend on other ports. This is a very convenient
 feature of most Unix-like operating systems, including FreeBSD.
 Multiple ports can share a common dependency, rather than
 bundling that dependency with every port or package that needs
 it. There are seven variables that can be used to ensure that
 all the required bits will be on the user's machine. There are
 also some pre-supported dependency variables for common cases,
 plus a few more to control the behavior of dependencies.
5.8.1. LIB_DEPENDS
This variable specifies the shared libraries this port
	depends on. It is a list of
	lib:dir
	tuples where lib is the name of
	the shared library, dir is the
	directory in which to find it in case it is not available.
	For example,
LIB_DEPENDS= libjpeg.so:${PORTSDIR}/graphics/jpeg
will check for a shared jpeg library with any version, and
	descend into the graphics/jpeg
	subdirectory of the ports tree to build and install it if it
	is not found.
The dependency is checked twice, once from within the
	build target and then from within
	the install target. Also, the name
	of the dependency is put into the package so that
	pkg install (see pkg-install(8)) will
	automatically install it if it is not on the user's
	system.
5.8.2. RUN_DEPENDS
This variable specifies executables or files this port
	depends on during run-time. It is a list of
	path:dir[:target]
	tuples where path is the name of
	the executable or file, dir is the
	directory in which to find it in case it is not available, and
	target is the target to call in
	that directory. If path starts
	with a slash (/), it is treated as a file
	and its existence is tested with test -e;
	otherwise, it is assumed to be an executable, and
	which -s is used to determine if the
	program exists in the search path.
例如，
RUN_DEPENDS=	${LOCALBASE}/news/bin/innd:${PORTSDIR}/news/inn \
		xmlcatmgr:${PORTSDIR}/textproc/xmlcatmgr
will check if the file or directory
	/usr/local/news/bin/innd exists, and
	build and install it from the news/inn
	subdirectory of the ports tree if it is not found. It will
	also see if an executable called xmlcatmgr
	is in the search path, and descend into
	textproc/xmlcatmgr
	to build and install it if it is not found.
注意:
In this case, innd is actually an
	 executable; if an executable is in a place that is not
	 expected to be in the search path, use the full
	 pathname.

注意:
The official search PATH used on the
	 ports build cluster is
/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin

The dependency is checked from within the
	install target. Also, the name of
	the dependency is put into the package so that
	pkg install (see pkg-install(8)) will
	automatically install it if it is not on the user's system.
	The target part can be omitted if
	it is the same as DEPENDS_TARGET.
A quite common situation is when
	RUN_DEPENDS is literally the same as
	BUILD_DEPENDS, especially if ported
	software is written in a scripted language or if it requires
	the same build and run-time environment. In this case, it is
	both tempting and intuitive to directly assign one to the
	other:
RUN_DEPENDS=	${BUILD_DEPENDS}
However, such assignment can pollute run-time
	dependencies with entries not defined in the port's original
	BUILD_DEPENDS. This happens because of
	make(1)'s lazy evaluation of variable assignment.
	Consider a Makefile with
	USE_*,
	which are processed by ports/Mk/bsd.*.mk
	to augment initial build dependencies. For example,
	USES= gmake adds
	devel/gmake to
	BUILD_DEPENDS. To prevent such additional
	dependencies from polluting RUN_DEPENDS,
	create another variable with the current content of
	BUILD_DEPENDS and assign it to both
	BUILD_DEPENDS and
	RUN_DEPENDS:
MY_DEPENDS=	some:${PORTSDIR}/devel/some \
		other:${PORTSDIR}/lang/other
BUILD_DEPENDS=	${MY_DEPENDS}
RUN_DEPENDS=	${MY_DEPENDS}
重要:
Do not use :=
	 to assign BUILD_DEPENDS to
	 RUN_DEPENDS or vice-versa. All
	 variables are expanded immediately, which is exactly the
	 wrong thing to do and almost always a failure.

5.8.3. BUILD_DEPENDS
This variable specifies executables or files this port
	requires to build. Like RUN_DEPENDS, it
	is a list of
	path:dir[:target]
	tuples. For example,
BUILD_DEPENDS=	unzip:${PORTSDIR}/archivers/unzip
will check for an executable called
	unzip, and descend into the
	archivers/unzip subdirectory of the
	ports tree to build and install it if it is not found.
注意:
“build” here means everything from
	 extraction to compilation. The dependency is checked from
	 within the extract target. The
	 target part can be omitted if it
	 is the same as DEPENDS_TARGET

5.8.4. FETCH_DEPENDS
This variable specifies executables or files this port
	requires to fetch. Like the previous two, it is a list of
	path:dir[:target]
	tuples. For example,
FETCH_DEPENDS=	ncftp2:${PORTSDIR}/net/ncftp2
will check for an executable called
	ncftp2, and descend into the
	net/ncftp2 subdirectory of the ports
	tree to build and install it if it is not found.
The dependency is checked from within the
	fetch target. The
	target part can be omitted if it is
	the same as DEPENDS_TARGET.
5.8.5. EXTRACT_DEPENDS
This variable specifies executables or files this port
	requires for extraction. Like the previous, it is a list of
	path:dir[:target]
	tuples. For example,
EXTRACT_DEPENDS=	unzip:${PORTSDIR}/archivers/unzip
will check for an executable called
	unzip, and descend into the
	archivers/unzip subdirectory of the
	ports tree to build and install it if it is not found.
The dependency is checked from within the
	extract target. The
	target part can be omitted if it
	is the same as DEPENDS_TARGET.
注意:
Use this variable only if the extraction does not
	 already work (the default assumes tar)
	 and cannot be made to work using
	 USES=tar, USES=lha or
	 USES=zip described in 章 15, Using USES
 Macros.

5.8.6. PATCH_DEPENDS
This variable specifies executables or files this port
	requires to patch. Like the previous, it is a list of
	path:dir[:target]
	tuples. For example,
PATCH_DEPENDS=	${NONEXISTENT}:${PORTSDIR}/java/jfc:extract
will descend into the java/jfc
	subdirectory of the ports tree to extract it.
The dependency is checked from within the
	patch target. The
	target part can be omitted if it
	is the same as DEPENDS_TARGET.
5.8.7. USES
Parameters can be added to define different features and
	dependencies used by the port. They are specified by adding
	this line to the Makefile:
USES= feature[:arguments]
For the complete list of values, please see
	章 15, Using USES
 Macros.
警告:
USES cannot be assigned after
	 inclusion of bsd.port.pre.mk.

5.8.8. USE_*
Several variables exist to define common dependencies
	shared by many ports. Their use is optional, but helps to
	reduce the verbosity of the port
	Makefiles. Each of them is styled as
	USE_*. These
	variables may be used only in the port
	Makefiles and
	ports/Mk/bsd.*.mk. They are not meant
	for user-settable options — use
	PORT_OPTIONS for that purpose.
注意:
It is always incorrect to set any
	 USE_* in
	 /etc/make.conf. For instance,
	 setting
USE_GCC=X.Y
(where X.Y is version number) would add a dependency
	 on gccXY for every port, including
	 lang/gccXY itself!

表格 5.6. USE_*
	Variable	Means
	USE_GCC	The port requires GCC (gcc or
		g++) to build. Some ports need any
		GCC version, some require modern, recent versions. It
		is typically set to any (in this
		case, GCC from base would be used on versions of FreeBSD
		that still have it, or lang/gcc
		port would be installed when default C/C++ compiler is
		Clang); or yes (means always use
		stable, modern GCC from lang/gcc
		port). The exact version can also be specified, with
		a value such as 4.7. The minimal
		required version can be specified as
		4.6+. The GCC from the base system
		is used when it satisfies the requested version,
		otherwise an appropriate compiler is built from the
		port, and CC and
		CXX are adjusted
		accordingly.

Variables related to gmake and
	configure are described in
	節 6.5, “Building Mechanisms”, while
	autoconf,
	automake and
	libtool are described in
	節 6.6, “使用 GNU Autotools”.
	Perl related variables are
	described in 節 6.8, “使用 Perl”. X11 variables are
	listed in 節 6.9, “使用 X11”.
	節 6.10, “使用 GNOME” deals with GNOME and
	節 6.13, “使用 KDE” with KDE related variables.
	節 6.14, “使用 Java” documents Java variables, while
	節 6.15, “網路應用程式, Apache 和 PHP” contains information on
	Apache,
	PHP and PEAR modules.
	Python is discussed in
	節 6.16, “使用 Python”, while
	Ruby in
	節 6.19, “使用 Ruby”. 節 6.20, “使用 SDL”
	provides variables used for SDL
	applications and finally, 節 6.24, “使用 Xfce”
	contains information on
	Xfce.
5.8.9. Minimal Version of a Dependency
A minimal version of a dependency can be specified in any
	*_DEPENDS
	except LIB_DEPENDS using this
	syntax:
p5-Spiffy>=0.26:${PORTSDIR}/devel/p5-Spiffy
The first field contains a dependent package name, which
	must match the entry in the package database, a comparison
	sign, and a package version. The dependency is satisfied if
	p5-Spiffy-0.26 or newer is installed on the machine.
5.8.10. Notes on Dependencies
As mentioned above, the default target to call when a
	dependency is required is
	DEPENDS_TARGET. It defaults to
	install. This is a user variable; it is
	never defined in a port's Makefile. If
	the port needs a special way to handle a dependency, use the
	:target part of
	*_DEPENDS
	instead of redefining
	DEPENDS_TARGET.
When running make clean, the port
	dependencies are automatically cleaned too. If this is not
	desirable, define
	NOCLEANDEPENDS in the environment. This
	may be particularly desirable if the port has something that
	takes a long time to rebuild in its dependency list, such as
	KDE, GNOME or Mozilla.
To depend on another port unconditionally, use the
	variable ${NONEXISTENT} as the first field
	of BUILD_DEPENDS or
	RUN_DEPENDS. Use this only when
	the source of the other port is needed. Compilation time can
	be saved by specifying the target too. For
	instance
BUILD_DEPENDS=	${NONEXISTENT}:${PORTSDIR}/graphics/jpeg:extract
will always descend to the jpeg port
	and extract it.
5.8.11. Circular Dependencies Are Fatal
重要:
Do not introduce any circular dependencies into the
	 ports tree!

The ports building technology does not tolerate circular
	dependencies. If one is introduced, someone, somewhere in the
	world, will have their FreeBSD installation broken
	almost immediately, with many others quickly to follow. These
	can really be hard to detect. If in doubt, before making
	that change, make sure to run:
	cd /usr/ports; make index. That process
	can be quite slow on older machines, but it may be able to
	save a large number of people, including yourself,
	a lot of grief in the process.
5.8.12. Problems Caused by Automatic Dependencies
Dependencies must be declared either explicitly or by
	using the
	OPTIONS framework.
	Using other methods like automatic detection complicates
	indexing, which causes problems for port and package
	management.
範例 5.13. Wrong Declaration of an Optional Dependency
.include <bsd.port.pre.mk>

.if exists(${LOCALBASE}/bin/foo)
LIB_DEPENDS=	libbar.so:${PORTSDIR}/foo/bar
.endif

The problem with trying to automatically add dependencies
	is that files and settings outside an individual port can
	change at any time. For example: an index is built, then a
	batch of ports are installed. But one of the ports installs
	the tested file. The index is now incorrect, because an
	installed port unexpectedly has a new dependency. The index
	may still be wrong even after rebuilding if other ports also
	determine their need for dependencies based on the existence
	of other files.
範例 5.14. Correct Declaration of an Optional Dependency
OPTIONS_DEFINE=	BAR
BAR_DESC=	Calling cellphones via bar

BAR_LIB_DEPENDS=	libbar.so:${PORTSDIR}/foo/bar

Testing option variables is the correct method. It will
	not cause inconsistencies in the index of a batch of ports,
	provided the options were defined prior to the index build.
	Simple scripts can then be used to automate the building,
	installation, and updating of these ports and their
	packages.
5.8.13. USE_* and
	WANT_*
USE_* are
	set by the port maintainer to define software on which this
	port depends. A port that needs Firefox would set
USE_FIREFOX=	yes
Some USE_*
	can accept version numbers or other parameters. For example,
	a port that requires Apache 2.2 would set
USE_APACHE=	22
For more control over dependencies in some cases,
	WANT_* are
	available to more precisely specify what is needed. For
	example, consider the mail/squirrelmail port. This
	port needs some PHP modules, which are listed in
	USE_PHP:
USE_PHP=	session mhash gettext mbstring pcre openssl xml
Those modules may be available in CLI or web versions, so
	the web version is selected with
	WANT_*:
WANT_PHP_WEB=	yes
Available
	USE_* and
	WANT_* are
	defined in the files in
	/usr/ports/Mk.
5.9. MASTERDIR
If the port needs to build slightly different versions of
 packages by having a variable (for instance, resolution, or
 paper size) take different values, create one subdirectory per
 package to make it easier for users to see what to do, but try
 to share as many files as possible between ports. Typically, by
 using variables cleverly, only a very short
 Makefile is needed in all but one of the
 directories. In the sole Makefile, use
 MASTERDIR to specify the directory where the
 rest of the files are. Also, use a variable as part of PKGNAMESUFFIX
 so the packages will have different names.
This will be best demonstrated by an example. This is part
 of japanese/xdvi300/Makefile;
PORTNAME=	xdvi
PORTVERSION=	17
PKGNAMEPREFIX=	ja-
PKGNAMESUFFIX=	${RESOLUTION}

default
RESOLUTION?=	300
.if ${RESOLUTION} != 118 && ${RESOLUTION} != 240 && \
 ${RESOLUTION} != 300 && ${RESOLUTION} != 400
pre-everything::
	@${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RESOLUTION}\""
	@${ECHO_MSG} "Possible values are: 118, 240, 300 (default) and 400."
	@${FALSE}
.endif
japanese/xdvi300 also has all
 the regular patches, package files, etc. Running
 make there, it will take the default value
 for the resolution (300) and build the port normally.
As for other resolutions, this is the
 entire
 xdvi118/Makefile:
RESOLUTION=	118
MASTERDIR=	${.CURDIR}/../xdvi300

.include "${MASTERDIR}/Makefile"
(xdvi240/Makefile and
 xdvi400/Makefile are similar).
 MASTERDIR definition tells
 bsd.port.mk that the regular set of
 subdirectories like FILESDIR and
 SCRIPTDIR are to be found under
 xdvi300. The
 RESOLUTION=118 line will override the
 RESOLUTION=300 line in
 xdvi300/Makefile and the port will be built
 with resolution set to 118.
5.10. Man Pages
If the port anchors its man tree somewhere other than
 PREFIX, use
 MANDIRS to specify those directories. Note
 that the files corresponding to manual pages must be placed in
 pkg-plist along with the rest of the files.
 The purpose of MANDIRS is to enable automatic
 compression of manual pages, therefore the file names are
 suffixed with .gz.
5.11. Info Files
If the package needs to install GNU info
 files, list them in INFO (without the
 trailing .info), one entry per document.
 These files are assumed to be installed to
 PREFIX/INFO_PATH. Change
 INFO_PATH if the package uses a different
 location. However, this is not recommended. These entries
 contain just the path relative to
 PREFIX/INFO_PATH. For example,
 lang/gcc34 installs info files to
 PREFIX/INFO_PATH/gcc34, and
 INFO will be something like this:
INFO=	gcc34/cpp gcc34/cppinternals gcc34/g77 ...
Appropriate installation/de-installation code will be
 automatically added to the temporary
 pkg-plist before package
 registration.
5.12. Makefile Options
Many applications can be built with optional or differing
 configurations. Examples include choice of natural (human)
 language, GUI versus command-line, or type of database to
 support. Users may need a different configuration than the
 default, so the ports system provides hooks the port author can
 use to control which variant will be built. Supporting these
 options properly will make users happy, and effectively provide
 two or more ports for the price of one.
5.12.1. OPTIONS
5.12.1.1. Background
OPTIONS_*
	 give the user installing the port a dialog showing the
	 available options, and then saves those options to
	 ${PORT_DBDIR}/${OPTIONS_NAME}/options.
	 The next time the port is built, the options are
	 reused. PORT_DBDIR defaults to
	 /var/db/ports.
	 OPTIONS_NAME is to the port origin with
	 an underscore as the space separator, for example, for
	 dns/bind99 it will be
	 dns_bind99.
When the user runs make config (or
	 runs make build for the first time), the
	 framework checks for
	 ${PORT_DBDIR}/${OPTIONS_NAME}/options.
	 If that file does not exist, the values of
	 OPTIONS_*
	 are used, and a dialog box is
	 displayed where the options can be enabled or disabled.
	 Then options is saved and the
	 configured variables are used when building the port.
If a new version of the port adds new
	 OPTIONS, the dialog will be presented to
	 the user with the saved values of old
	 OPTIONS prefilled.
make showconfig shows the saved
	 configuration. Use make rmconfig
	 to remove the saved configuration.
5.12.1.2. Syntax
OPTIONS_DEFINE contains a list of
	 OPTIONS to be used. These are
	 independent of each other and are not grouped:
OPTIONS_DEFINE=	OPT1 OPT2
Once defined, OPTIONS are
	 described (optional, but strongly recommended):
OPT1_DESC=	Describe OPT1
OPT2_DESC=	Describe OPT2
OPT3_DESC=	Describe OPT3
OPT4_DESC=	Describe OPT4
OPT5_DESC=	Describe OPT5
OPT6_DESC=	Describe OPT6
ports/Mk/bsd.options.desc.mk
	 has descriptions for many common OPTIONS.
	 While often useful, override them if the
	 description is insufficient for the port.
提示:
When describing options, view it from the
	 perspective of the user: “What functionality does it
	 change?”
	 and “Why would I want to enable this?”
	 Do not just repeat the name. For example, describing the
	 NLS option as
	 “include NLS support” does not help the user,
	 who can already see the option name but may not know what
	 it means. Describing it as “Native Language Support
	 via gettext utilities” is much more
	 helpful.

重要:
Option names are always in all uppercase. They
	 cannot use mixed case or lowercase.

OPTIONS can be grouped as radio
	 choices, where only one choice from each group is
	 allowed:
OPTIONS_SINGLE=		SG1
OPTIONS_SINGLE_SG1=	OPT3 OPT4
警告:
There must be one of each
	 OPTIONS_SINGLE group selected at all
	 times for the options to be valid. One option of each
	 group must be added to
	 OPTIONS_DEFAULT.

OPTIONS can be grouped as radio
	 choices, where none or only one choice from each group
	 is allowed:
OPTIONS_RADIO=		RG1
OPTIONS_RADIO_RG1=	OPT7 OPT8
OPTIONS can also be grouped as
	 “multiple-choice” lists, where
	 at least one option must be
	 enabled:
OPTIONS_MULTI=		MG1
OPTIONS_MULTI_MG1=	OPT5 OPT6
OPTIONS can also be grouped as
	 “multiple-choice” lists, where none or any
	 option can be enabled:
OPTIONS_GROUP=		GG1
OPTIONS_GROUP_GG1=	OPT9 OPT10
OPTIONS are unset by default,
	 unless they are listed in
	 OPTIONS_DEFAULT:
OPTIONS_DEFAULT=	OPT1 OPT3 OPT6
OPTIONS definitions must appear
	 before the inclusion of
	 bsd.port.options.mk.
	 PORT_OPTIONS values can only be tested
	 after the inclusion of
	 bsd.port.options.mk. Inclusion of
	 bsd.port.pre.mk can be used instead,
	 too, and is still widely used in ports written before the
	 introduction of bsd.port.options.mk.
	 But be aware that some variables will not work as expected
	 after the inclusion of bsd.port.pre.mk,
	 typically some
	 USE_*
	 flags.
範例 5.15. Simple Use of OPTIONS
OPTIONS_DEFINE=	FOO BAR
FOO_DESC=	Option foo support
BAR_DESC=	Feature bar support

OPTIONS_DEFAULT=FOO

Will add --with-foo / --without-foo
FOO_CONFIGURE_WITH=	foo
BAR_RUN_DEPENDS=	bar:${PORTSDIR}/bar/bar

.include <bsd.port.mk>

範例 5.16. Check for Unset Port
	 OPTIONS
.if ! ${PORT_OPTIONS:MEXAMPLES}
CONFIGURE_ARGS+=--without-examples
.endif
The form shown above is discouraged. The preferred
	 method is using a configure knob to really enable and
	 disable the feature to match the option:
Will add --with-examples / --without-examples
EXAMPLES_CONFIGURE_WITH=	examples

範例 5.17. Practical Use of OPTIONS
OPTIONS_DEFINE=		EXAMPLES

OPTIONS_SINGLE=		BACKEND
OPTIONS_SINGLE_BACKEND=	MYSQL PGSQL BDB

OPTIONS_MULTI=		AUTH
OPTIONS_MULTI_AUTH=	LDAP PAM SSL

EXAMPLES_DESC=		Install extra examples
MYSQL_DESC=		Use MySQL as backend
PGSQL_DESC=		Use PostgreSQL as backend
BDB_DESC=		Use Berkeley DB as backend
LDAP_DESC=		Build with LDAP authentication support
PAM_DESC=		Build with PAM support
SSL_DESC=		Build with OpenSSL support

OPTIONS_DEFAULT=	PGSQL LDAP SSL

Will add USE_PGSQL=yes
PGSQL_USE=	pgsql=yes
Will add --enable-postgres / --disable-postgres
PGSQL_CONFIGURE_ENABLE=	postgres

ICU_LIB_DEPENDS=	libicuuc.so:${PORTSDIR}/devel/icu

Will add --with-examples / --without-examples
EXAMPLES_CONFIGURE_WITH=	examples

Check other OPTIONS

.include <bsd.port.mk>

5.12.1.3. Default Options
These options are always on by default.
	DOCS — build and install
	 documentation.

	NLS — Native Language
	 Support.

	EXAMPLES — build and
	 install examples.

	IPV6 — IPv6 protocol
	 support.

注意:
There is no need to add these to
	 OPTIONS_DEFAULT. To have them active,
	 and show up in the options selection dialog, however, they
	 must be added to OPTIONS_DEFINE.

5.12.2. Feature Auto-Activation
When using a GNU configure script, keep an eye on which
	optional features are activated by auto-detection. Explicitly
	disable optional features that are not needed by
	adding --without-xxx or
	--disable-xxx in
	CONFIGURE_ARGS.
範例 5.18. Wrong Handling of an Option
.if ${PORT_OPTIONS:MFOO}
LIB_DEPENDS+=		libfoo.so:${PORTSDIR}/devel/foo
CONFIGURE_ARGS+=	--enable-foo
.endif

In the example above, imagine a library libfoo is
	installed on the system. The user does not want this
	application to use libfoo, so he toggled the option off in the
	make config dialog. But the application's
	configure script detects the library present in the system and
	includes its support in the resulting executable. Now when
	the user decides to remove libfoo from the system, the ports
	system does not protest (no dependency on libfoo was recorded)
	but the application breaks.
範例 5.19. Correct Handling of an Option
FOO_LIB_DEPENDS=		libfoo.so:${PORTSDIR}/devel/foo
Will add --enable-foo / --disable-foo
FOO_CONFIGURE_ENABLE=	foo

注意:
Under some circumstances, the shorthand conditional
	 syntax can cause problems with complex constructs. The
	 errors are usually
	 Malformed conditional, an alternative
	 syntax can be used.
.if !empty(VARIABLE:MVALUE)
as an alternative to
.if ${VARIABLE:MVALUE}

5.12.3. Options Helpers
There are some macros to help simplify conditional values
	which differ based on the options set.
5.12.3.1. OPTIONS_SUB
If OPTIONS_SUB is set to
	 yes then each of the options added to
	 OPTIONS_DEFINE will be added to
	 PLIST_SUB and
	 SUB_LIST, for example:
OPTIONS_DEFINE=	OPT1
OPTIONS_SUB=	yes
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
PLIST_SUB+=	OPT1="" NO_OPT1="@comment "
SUB_LIST+=	OPT1="" NO_OPT1="@comment "
.else
PLIST_SUB+=	OPT1="@comment " NO_OPT1=""
SUB_LIST+=	OPT1="@comment " NO_OPT1=""
.endif
注意:
The value of OPTIONS_SUB is
	 ignored. Setting it to any value will add
	 PLIST_SUB and
	 SUB_LIST entries for
	 all options.

5.12.3.2. OPT_USE and OPT_USE_OFF
When option OPT is selected,
	 for each
	 key=value
	 pair in
	 OPT_USE,
	 value is appended to the
	 corresponding
	 USE_KEY. If
	 value has spaces in it, replace
	 them with commas and they will be changed back to spaces
	 during processing.
	 OPT_USE_OFF
	 works the same way, but when OPT is
	 not selected. For example:
OPTIONS_DEFINE=	OPT1
OPT1_USE=	mysql=yes xorg=x11,xextproto,xext,xrandr
OPT1_USE_OFF=	openssl=yes
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
USE_MYSQL=	yes
USE_XORG=	x11 xextproto xext xrandr
.else
USE_OPENSSL=	yes
.endif
5.12.3.3. OPT_CONFIGURE_ENABLE
When option OPT is selected,
	 for each entry in
	 OPT_CONFIGURE_ENABLE
	 then
	 --enable-entry
	 is appended to CONFIGURE_ARGS. When
	 option OPT is
	 not selected,
	 --disable-entry
	 is appended to CONFIGURE_ARGS. An
	 optional argument can be specified with an
	 = symbol. This argument is only appended
	 to the
	 --enable-entry
	 configure option. For example:
OPTIONS_DEFINE=	OPT1 OPT2
OPT1_CONFIGURE_ENABLE=	test1 test2
OPT2_CONFIGURE_ENABLE=	test2=exhaustive
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+=	--enable-test1 --enable-test2
.else
CONFIGURE_ARGS+=	--disable-test1 --disable-test2
.endif

.if ${PORT_OPTIONS:MOPT2}
CONFIGURE_ARGS+=	--enable-test2=exhaustive
.else
CONFIGURE_ARGS+=	--disable-test2
.endif
5.12.3.4. OPT_CONFIGURE_WITH
When option OPT is selected,
	 for each entry in
	 OPT_CONFIGURE_WITH
	 then
	 --with-entry
	 is appended to CONFIGURE_ARGS. When
	 option OPT is
	 not selected,
	 --without-entry
	 is appended to CONFIGURE_ARGS. An
	 optional argument can be specified with an
	 = symbol. This argument is only appended
	 to the
	 --with-entry
	 configure option. For example:
OPTIONS_DEFINE=	OPT1 OPT2
OPT1_CONFIGURE_WITH=	test1
OPT2_CONFIGURE_WITH=	test2=exhaustive
is equivalent to:
OPTIONS_DEFINE=	OPT1 OPT2

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+=	--with-test1
.else
CONFIGURE_ARGS+=	--without-test1
.endif

.if ${PORT_OPTIONS:MOPT2}
CONFIGURE_ARGS+=	--with-test2=exhaustive
.else
CONFIGURE_ARGS+=	--without-test2
.endif
5.12.3.5. OPT_CONFIGURE_ON and OPT_CONFIGURE_OFF
When option OPT is selected,
	 the value of
	 OPT_CONFIGURE_ON,
	 if defined, is appended to
	 CONFIGURE_ARGS.
	 OPT_CONFIGURE_OFF
	 works the same way, but when OPT is
	 not selected. For example:
OPTIONS_DEFINE=	OPT1
OPT1_CONFIGURE_ON=	--add-test
OPT1_CONFIGURE_OFF=	--no-test
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+=	--add-test
.else
CONFIGURE_ARGS+=	--no-test
.endif
5.12.3.6. OPT_CMAKE_ON
	 and
	 OPT_CMAKE_OFF
When option OPT is selected,
	 the value of
	 OPT_CMAKE_ON,
	 if defined, is appended to CMAKE_ARGS.
	 OPT_CMAKE_OFF
	 works the same way, but when OPT is
	 not selected. For example:
OPTIONS_DEFINE=	OPT1
OPT1_CMAKE_ON=	-DTEST:BOOL=true
OPT1_CMAKE_OFF=	-DOPTIMIZE:BOOL=true
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CMAKE_ARGS+=	-DTEST:BOOL=true
.else
CMAKE_ARGS+=	-DOPTIMIZE:BOOL=true
.endif
5.12.3.7. OPT_QMAKE_ON
	 and
	 OPT_QMAKE_OFF
When option OPT is selected,
	 the value of
	 OPT_QMAKE_ON,
	 if defined, is appended to QMAKE_ARGS.
	 OPT_QMAKE_OFF
	 works the same way, but when OPT is
	 not selected. For example:
OPTIONS_DEFINE=	OPT1
OPT1_QMAKE_ON=	-DTEST:BOOL=true
OPT1_QMAKE_OFF=	-DPRODUCTION:BOOL=true
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
QMAKE_ARGS+=	-DTEST:BOOL=true
.else
QMAKE_ARGS+=	-DPRODUCTION:BOOL=true
.endif
5.12.3.8. OPT_IMPLIES
Provides a way to add dependencies between
	 options.
When OPT is selected, all the
	 options listed in this variable will be selected too. Using
	 the OPT_CONFIGURE_ENABLE
	 described earlier to illustrate:
OPTIONS_DEFINE=	OPT1 OPT2
OPT1_IMPLIES=	OPT2

OPT1_CONFIGURE_ENABLE=	opt1
OPT2_CONFIGURE_ENABLE=	opt2
Is equivalent to:
OPTIONS_DEFINE=	OPT1 OPT2

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+=	--enable-opt1
.else
CONFIGURE_ARGS+=	--disable-opt1
.endif

.if ${PORT_OPTIONS:MOPT2} || ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+=	--enable-opt2
.else
CONFIGURE_ARGS+=	--disable-opt2
.endif
範例 5.20. Simple Use of
	 OPT_IMPLIES
This port has a X11 option, and a
	 GNOME option that needs the
	 X11 option to be selected to
	 build.
OPTIONS_DEFINE=	X11 GNOME
OPTIONS_DEFAULT=	X11

X11_USE=	xorg=xi,xextproto
GNOME_USE=	gnome=gtk30
GNOME_IMPLIES=	X11

5.12.3.9. OPT_PREVENTS
	 and
	 OPT_PREVENTS_MSG
Provides a way to add conflicts between options.
When OPT is selected, all the
	 options listed in this variable must be un-selected. If
	 OPT_PREVENTS_MSG
	 is also selected, its content will be shown, explaining why
	 they conflict. For example:
OPTIONS_DEFINE=	OPT1 OPT2
OPT1_PREVENTS=	OPT2
OPT1_PREVENTS_MSG=	OPT1 and OPT2 enable conflicting options
Is roughly equivalent to:
OPTIONS_DEFINE=	OPT1 OPT2

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT2} || ${PORT_OPTIONS:MOPT1}
BROKEN=	Option OPT1 conflicts with OPT2 (select only one)
.endif
The only difference is that the first one will write an
	 error after running make config,
	 suggesting changing the selected options.
範例 5.21. Simple Use of
	 OPT_PREVENTS
This port has X509 and
	 SCTP options. Both options add
	 patches, but the patches conflict with each other, so they
	 cannot be selected at the same time.
OPTIONS_DEFINE=	X509 SCTP

SCTP_PATCHFILES=	${PORTNAME}-6.8p1-sctp-2573.patch.gz:-p1
SCTP_CONFIGURE_WITH=	sctp

X509_PATCH_SITES=	http://www.roumenpetrov.info/openssh/x509/:x509
X509_PATCHFILES=	${PORTNAME}-7.0p1+x509-8.5.diff.gz:-p1:x509
X509_PREVENTS=		SCTP
X509_PREVENTS_MSG=	X509 and SCTP patches conflict

5.12.3.10. OPT_VARS
	 and
	 OPT_VARS_OFF
Provides a generic way to set and append to
	 variables.
警告:
Before using
	 OPT_VARS and
	 OPT_VARS_OFF,
	 see if there is already a more specific helper available in
	 節 5.12.3.12, “Generic Variables Replacement,
	 OPT_VARIABLE
	 and
	 OPT_VARIABLE_OFF”.

When option OPT is selected,
	 and OPT_VARS
	 defined,
	 key=value
	 and
	 key+=value
	 pairs are evaluated from
	 OPT_VARS. An
	 = cause the existing value of
	 KEY to be overwritten, an
	 += appends to the value.
	 OPT_VARS_OFF
	 works the same way, but when OPT is
	 not selected.
OPTIONS_DEFINE=	OPT1 OPT2 OPT3
OPT1_VARS=	also_build+=bin1
OPT2_VARS=	also_build+=bin2
OPT3_VARS=	bin3_build=yes
OPT3_VARS_OFF=	bin3_build=no

MAKE_ARGS=	ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}"
is equivalent to:
OPTIONS_DEFINE=	OPT1 OPT2

MAKE_ARGS=	ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}"

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
ALSO_BUILD+=	bin1
.endif

.if ${PORT_OPTIONS:MOPT2}
ALSO_BUILD+=	bin2
.endif

.if ${PORT_OPTIONS:MOPT2}
BIN3_BUILD=	yes
.else
BIN3_BUILD=	no
.endif
提示:
Values containing whitespace must be enclosed in
	 quotes:
OPT_VARS=	foo="bar baz"
This is due to the way make(1) variable expansion
	 deals with whitespace. When OPT_VARS= foo=bar
	 baz is expanded, the variable ends up
	 containing two strings, foo=bar and
	 baz. But the submitter probably
	 intended there to be only one string, foo=bar
	 baz. Quoting the value prevents whitespace
	 from being used as a delimiter.

5.12.3.11. Dependencies,
	 OPT_DEPTYPE
	 and
	 OPT_DEPTYPE_OFF
For any of these dependency types:
	PKG_DEPENDS

	EXTRACT_DEPENDS

	PATCH_DEPENDS

	FETCH_DEPENDS

	BUILD_DEPENDS

	LIB_DEPENDS

	RUN_DEPENDS

When option OPT is
	 selected, the value of
	 OPT_DEPTYPE,
	 if defined, is appended to
	 DEPTYPE.
	 OPT_DEPTYPE_OFF
	 works the same, but when OPT is
	 not
	 selected. For example:
OPTIONS_DEFINE=	OPT1
OPT1_LIB_DEPENDS=	liba.so:${PORTSDIR}/devel/a
OPT1_LIB_DEPENDS_OFF=	libb.so:${PORTSDIR}/devel/b
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
LIB_DEPENDS+=	liba.so:${PORTSDIR}/devel/a
.else
LIB_DEPENDS+=	libb.so:${PORTSDIR}/devel/b
.endif
5.12.3.12. Generic Variables Replacement,
	 OPT_VARIABLE
	 and
	 OPT_VARIABLE_OFF
For any of these variables:
	ALL_TARGET

	BROKEN

	CATEGORIES

	CFLAGS

	CONFIGURE_ENV

	CONFLICTS

	CONFLICTS_BUILD

	CONFLICTS_INSTALL

	CPPFLAGS

	CXXFLAGS

	DESKTOP_ENTRIES

	DISTFILES

	EXTRA_PATCHES

	EXTRACT_ONLY

	GH_ACCOUNT

	GH_PROJECT

	GH_TAGNAME

	GH_TUPLE

	IGNORE

	INFO

	INSTALL_TARGET

	LDFLAGS

	LIBS

	MAKE_ARGS

	MAKE_ENV

	PATCHFILES

	PATCH_SITES

	PLIST_DIRS

	PLIST_DIRSTRY

	PLIST_FILES

	PLIST_SUB

	PORTDOCS

	PORTEXAMPLES

	SUB_FILES

	SUB_LIST

	TEST_TARGET

	USES

When option OPT is
	 selected, the value of
	 OPT_ABOVEVARIABLE,
	 if defined, is appended to
	 ABOVEVARIABLE.
	 OPT_ABOVEVARIABLE_OFF
	 works the same way, but when OPT is
	 not
	 selected. For example:
OPTIONS_DEFINE=	OPT1
OPT1_USES=	gmake
OPT1_CFLAGS_OFF=	-DTEST
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
USES+=		gmake
.else
CFLAGS+=	-DTEST
.endif
注意:
Some variables are not in this list, in particular
	 PKGNAMEPREFIX and
	 PKGNAMESUFFIX. This is intentional. A
	 port must not change its name when
	 its option set changes.

警告:
Some of these variables, at least
	 ALL_TARGET and
	 INSTALL_TARGET, have their default
	 values set after the options are
	 processed.
With these lines in the
	 Makefile:
ALL_TARGET=	all

DOCS_ALL_TARGET=	doc
If the DOCS option is enabled,
	 ALL_TARGET will have a final value of
	 all doc; if the option is disabled, it
	 would have a value of all.
With only the options helper line in the
	 Makefile:
DOCS_ALL_TARGET=	doc
If the DOCS option is enabled,
	 ALL_TARGET will have a final value of
	 doc; if the option is disabled, it
	 would have a value of all.

5.12.3.13. Additional Build Targets,
	 TARGET-OPT-on
	 and
	 TARGET-OPT-on
These Makefile targets can accept
	 optional extra build targets:
	pre-fetch

	do-fetch

	post-fetch

	pre-extract

	do-extract

	post-extract

	pre-patch

	do-patch

	post-patch

	pre-configure

	do-configure

	post-configure

	pre-build

	do-build

	post-build

	pre-install

	do-install

	post-install

	post-stage

	pre-package

	do-package

	post-package

When option OPT is
	 selected, the target
	 TARGET-OPT-on,
	 if defined, is executed after
	 TARGET.
	 TARGET-OPT-off
	 works the same way, but when OPT is
	 not selected. For example:
OPTIONS_DEFINE=	OPT1

post-patch-OPT1-on:
	@${REINPLACE_CMD} -e '/opt1/d' ${WRKSRC}/Makefile
post-patch-OPT1-off:
	@${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${LOCALBASE}/bin/|' ${WRKSRC}/Makefile
is equivalent to:
OPTIONS_DEFINE=	OPT1

.include <bsd.port.options.mk>

post-patch:
.if ${PORT_OPTIONS:MOPT1}
	@${REINPLACE_CMD} -e '/opt1/d' ${WRKSRC}/Makefile
.else
	@${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${LOCALBASE}/bin/|' ${WRKSRC}/Makefile
.endif
5.13. Specifying the Working Directory
Each port is extracted into a working directory, which must
 be writable. The ports system defaults to having
 DISTFILES unpack in to a directory called
 ${DISTNAME}. In other words, if the
 Makefile has:
PORTNAME=	foo
PORTVERSION=	1.0
then the port's distribution files contain a top-level
 directory, foo-1.0, and the rest of the
 files are located under that directory.
A number of variables can be overridden if that is
 not the case.
5.13.1. WRKSRC
The variable lists the name of the directory that is
	created when the application's distfiles are extracted. If
	our previous example extracted into a directory called
	foo (and not
	foo-1.0) write:
WRKSRC=	${WRKDIR}/foo
or possibly
WRKSRC=	${WRKDIR}/${PORTNAME}
5.13.2. WRKSRC_SUBDIR
If the source files needed for the port are in a
	subdirectory of the extracted distribution file, set
	WRKSRC_SUBDIR to that directory.
WRKSRC_SUBDIR=	src
5.13.3. NO_WRKSUBDIR
If the port does not extract in to a subdirectory at all,
	then set NO_WRKSUBDIR to
	indicate that.
NO_WRKSUBDIR=	yes
注意:
Because WRKDIR is the only directory
	 that is supposed to be writable during the build, and is
	 used to store many files recording the status of the build,
	 the port's extraction will be forced into a
	 subdirectory.

5.14. Conflict Handling
There are three different variables to register a conflict
 between packages and ports: CONFLICTS,
 CONFLICTS_INSTALL and
 CONFLICTS_BUILD.
注意:
The conflict variables automatically set the variable
	IGNORE, which is more fully documented in
	節 12.13, “Marking a Port Not Installable with
 BROKEN, FORBIDDEN, or
 IGNORE”.

When removing one of several conflicting ports, it is
 advisable to retain CONFLICTS in
 those other ports for a few months to cater for users who only
 update once in a while.
5.14.1. CONFLICTS_INSTALL
If the package cannot coexist with other packages
	(because of file conflicts, runtime incompatibilities, etc.),
	list the other package names in
	CONFLICTS_INSTALL. Use
	shell globs like * and ?
	here. Enumerate package names in there, not port names or
	origins. Please make sure
	that CONFLICTS_INSTALL does not match this
	port's package itself. Otherwise enforcing its installation
	with FORCE_PKG_REGISTER will no longer
	work. CONFLICTS_INSTALL check is done
	after the build stage and prior to the install stage.
5.14.2. CONFLICTS_BUILD
If the port cannot be built when other specific ports are
	already installed, list the other port names in
	CONFLICTS_BUILD. Use
	shell globs like * and ?
	here. Use package names, not port names or origins.
	CONFLICTS_BUILD check is done prior to the
	build stage. Build conflicts are not recorded in the
	resulting package.
5.14.3. CONFLICTS
If the port cannot be built if a certain port is already
	installed and the resulting package cannot coexist with the
	other package, list the other package name in
	CONFLICTS. use shell
	globs like * and ? here.
	Enumerate package names in there, not port names or
	origins. Please make sure that
	CONFLICTS does not match this
	port's package itself. Otherwise enforcing its installation
	with FORCE_PKG_REGISTER will no longer
	work. CONFLICTS check is done prior to the
	build stage and prior to the install stage.
5.15. Installing Files
5.15.1. INSTALL_*
	Macros
Use the macros provided in
	bsd.port.mk to ensure correct modes of
	files in the port's *-install
	targets. Set ownership directly in
	pkg-plist with the corresponding entries,
	such as
	@(owner,group,),
	@owner owner,
	and @group
	 group.
	These operators work until overridden, or until the end
	of pkg-plist, so do not forget to reset
	them after they are no longer needed. The default ownership
	is root:wheel. See 節 7.6.13, “Base Keywords” for more information.
	INSTALL_PROGRAM is a command to
	 install binary executables.

	INSTALL_SCRIPT is a command to
	 install executable scripts.

	INSTALL_LIB is a command to install
	 shared libraries (but not static libraries).

	INSTALL_KLD is a command to
	 install kernel loadable modules. Some architectures
	 do not like having the modules stripped, so
	 use this command instead of
	 INSTALL_PROGRAM.

	INSTALL_DATA is a command to
	 install sharable data, including static libraries.

	INSTALL_MAN is a command to
	 install manpages and other documentation (it does not
	 compress anything).

These variables are set to the install(1) command
	with the appropriate flags for each situation.
重要:
Do not use INSTALL_LIB to install
	 static libraries, because stripping them renders them
	 useless. Use INSTALL_DATA
	 instead.

5.15.2. Stripping Binaries and Shared Libraries
Installed binaries should be stripped. Do not strip
	binaries manually unless absolutely required. The
	INSTALL_PROGRAM macro installs and
	strips a binary at the same time. The
	INSTALL_LIB macro does the same thing to
	shared libraries.
When a file must be stripped, but neither
	INSTALL_PROGRAM nor
	INSTALL_LIB macros are desirable,
	${STRIP_CMD} strips the program or
	shared library. This is typically done within the
	post-install target. For
	example:
post-install:
	${STRIP_CMD} ${STAGEDIR}${PREFIX}/bin/xdl
When multiple files need to be stripped:
post-install:
.for l in geometry media body track world
	${STRIP_CMD} ${STAGEDIR}${PREFIX}/lib/lib${PORTNAME}-${l}.so.0
.endfor
Use file(1) on a file to determine if it has been
	stripped. Binaries are reported by file(1) as
	stripped, or
	not stripped. Additionally, strip(1)
	will detect programs that have already been stripped and exit
	cleanly.
5.15.3. Installing a Whole Tree of Files
Sometimes, a large number of files must be installed while
	preserving their hierarchical organization. For example,
	copying over a whole directory tree from
	WRKSRC to a target directory under
	PREFIX. Note that
	PREFIX, EXAMPLESDIR,
	DATADIR, and other path variables must
	always be prepended with STAGEDIR to
	respect staging (see 節 6.1, “Staging”).
Two macros exist for this situation. The advantage of
	using these macros instead of cp is that
	they guarantee proper file ownership and permissions on target
	files. The first macro, COPYTREE_BIN, will
	set all the installed files to be executable, thus being
	suitable for installing into PREFIX/bin.
	The second macro, COPYTREE_SHARE, does not
	set executable permissions on files, and is therefore suitable
	for installing files under PREFIX/share
	target.
post-install:
	${MKDIR} ${STAGEDIR}${EXAMPLESDIR}
	(cd ${WRKSRC}/examples && ${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR})
This example will install the contents of the
	examples directory in the vendor distfile
	to the proper examples location of the port.
post-install:
	${MKDIR} ${STAGEDIR}${DATADIR}/summer
	(cd ${WRKSRC}/temperatures && ${COPYTREE_SHARE} "June July August" ${STAGEDIR}${DATADIR}/summer)
And this example will install the data of summer months to
	the summer subdirectory of a
	DATADIR.
Additional find arguments can be
	passed via the third argument to
	COPYTREE_*
	macros. For example, to install
	all files from the first example except Makefiles, one can use
	these commands.
post-install:
	${MKDIR} ${STAGEDIR}${EXAMPLESDIR}
	(cd ${WRKSRC}/examples && \
	${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR} "! -name Makefile")
These macros do not add the installed files to
	pkg-plist. They must be added manually.
	For optional documentation (PORTDOCS, see
	節 5.15.4, “Install Additional Documentation”) and examples
	(PORTEXAMPLES), the
	%%PORTDOCS%% or
	%%PORTEXAMPLES%% prefixes must be prepended
	in pkg-plist.
5.15.4. Install Additional Documentation
If the software has some documentation other than the
	standard man and info pages that is useful for the
	user, install it under DOCSDIR
	This can be done, like the previous item, in the
	post-install target.
Create a new directory for the port. The directory name
	is DOCSDIR. This usually equals
	PORTNAME. However, if the user
	might want different versions of the port to be installed at
	the same time, the whole
	PKGNAME can be used.
Since only the files listed in
	pkg-plist are installed, it is safe to
	always install documentation to STAGEDIR
	(see 節 6.1, “Staging”). Hence .if
	blocks are only needed when the installed files are large
	enough to cause significant I/O overhead.
post-install:
	${MKDIR} ${STAGEDIR}${DOCSDIR}
	${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${STAGEDIR}${DOCSDIR}
Here are some handy variables and how they are expanded by
	default when used in the Makefile:
	DATADIR gets expanded to
	 PREFIX/share/PORTNAME.

	DATADIR_REL gets expanded to
	 share/PORTNAME.

	DOCSDIR gets expanded to
	 PREFIX/share/doc/PORTNAME.

	DOCSDIR_REL gets expanded to
	 share/doc/PORTNAME.

	EXAMPLESDIR gets expanded to
	 PREFIX/share/examples/PORTNAME.

	EXAMPLESDIR_REL gets expanded to
	 share/examples/PORTNAME.

注意:
The DOCS option only controls
	 additional documentation installed in
	 DOCSDIR. It does not apply to standard
	 man pages and info pages. Things installed in
	 DATADIR and
	 EXAMPLESDIR are controlled by
	 DATA and EXAMPLES
	 options, respectively.

These variables are exported to
	PLIST_SUB. Their values will appear there
	as pathnames relative to PREFIX if
	possible. That is, share/doc/PORTNAME
	will be substituted for %%DOCSDIR%% in the
	packing list by default, and so on. (See more on
	pkg-plist substitution
	here.)
All conditionally installed documentation files and
	directories are included in
	pkg-plist with the
	%%PORTDOCS%% prefix, for example:
%%PORTDOCS%%%%DOCSDIR%%/AUTHORS
%%PORTDOCS%%%%DOCSDIR%%/CONTACT
As an alternative to enumerating the documentation files
	in pkg-plist, a port can set the variable
	PORTDOCS to a list of file names and shell
	glob patterns to add to the final packing list. The names
	will be relative to DOCSDIR. Therefore, a
	port that utilizes PORTDOCS, and uses a
	non-default location for its documentation, must set
	DOCSDIR accordingly. If a directory is
	listed in PORTDOCS or matched by a glob
	pattern from this variable, the entire subtree of contained
	files and directories will be registered in the final packing
	list. If the DOCS option has been unset
	then files and directories listed in
	PORTDOCS would not be installed or added to
	port packing list. Installing the documentation at
	PORTDOCS as shown above remains up to the
	port itself. A typical example of utilizing
	PORTDOCS looks as follows:
PORTDOCS=	README.* ChangeLog docs/*
注意:
The equivalents of PORTDOCS for files
	 installed under DATADIR and
	 EXAMPLESDIR are
	 PORTDATA and
	 PORTEXAMPLES, respectively.
The contents of pkg-message are
	 displayed upon installation. See
	 the section on using
	 pkg-message for details.
	 pkg-message does not need to be added
	 to pkg-plist.

5.15.5. Subdirectories Under PREFIX
Try to let the port put things in the right subdirectories
	of PREFIX. Some ports lump everything and
	put it in the subdirectory with the port's name, which is
	incorrect. Also, many ports put everything except binaries,
	header files and manual pages in a subdirectory of
	lib, which does not work well with the
	BSD paradigm. Many of the files must be moved to one of these
	directories: etc (setup/configuration
	files), libexec (executables started
	internally), sbin (executables for
	superusers/managers), info (documentation
	for info browser) or share (architecture
	independent files). See hier(7) for details; the rules
	governing /usr pretty much apply to
	/usr/local too. The exception are ports
	dealing with USENET “news”. They may use
	PREFIX/news as a destination for their
	files.
章 6. Special Considerations
This section explains the most common things to consider when
 creating a port.
6.1. Staging
bsd.port.mk expects ports to work
 with a “stage directory”. This means that a port
 must not install files directly to the regular destination
 directories (that is, under PREFIX, for
 example) but instead into a separate directory from which the
 package is then built. In many cases, this does not require
 root privileges, making it possible to build packages as an
 unprivileged user. With staging, the port is built and
 installed into the stage directory,
 STAGEDIR. A package is created from the
 stage directory and then installed on the system. Automake
 tools refer to this concept as DESTDIR, but
 in FreeBSD, DESTDIR has a different meaning
 (see 節 9.4, “PREFIX 以及 DESTDIR”).
注意:
No port really needs to be root. It
	can mostly be avoided by using USES=uidfix.
	If the port still runs commands like chown(8),
	chgrp(1), or forces owner or group with install(1)
	then use USES=fakeroot
	to fake those calls. Some patching of the port's
	Makefiles will be needed.

Meta ports, or ports that do not install files themselves
 but only depend on other ports, must avoid needlessly
 extracting the mtree(8) to the stage directory. This is
 the basic directory layout of the package, and these empty
 directories will be seen as orphans. To prevent
 mtree(8) extraction, add this line:
NO_MTREE=	yes
提示:
Metaports should use USES=metaport.
	It sets up defaults for ports that do not fetch, build, or
	install anything.

Staging is enabled by prepending
 STAGEDIR to paths used in the
 pre-install,
 do-install, and
 post-install targets (see the
 examples through the book). Typically, this includes
 PREFIX, ETCDIR,
 DATADIR, EXAMPLESDIR,
 MANPREFIX, DOCSDIR, and
 so on. Directories should be created as part of the
 post-install target. Avoid using
 absolute paths whenever possible.
When creating a symlink, STAGEDIR
 is prepended to the target path only. For
 example:
${LN} -sf libfoo.so.42 ${STAGEDIR}${PREFIX}/lib/libfoo.so
The source path
 ${PREFIX}/lib/libfoo.so.42
 looks fine but could, in fact, be incorrect. Absolute paths can
 point to a wrong location, like when a remote file system has
 been mounted with NFS under a non-root mount
 point. Relative paths are less fragile, and often much
 shorter.
Ports that install kernel modules must prepend
 STAGEDIR to their destination, by default
 /boot/modules.
6.2. Bundled Libraries
This section explains why bundled dependencies are
 considered bad and what to do about them.
6.2.1. Why Bundled Libraries Are Bad
Some software requires the porter to locate third-party
	libraries and add the required dependencies to the port.
	Other software bundles all necessary libraries into the
	distribution file. The second approach seems easier at
	first, but there are some serious drawbacks:
This list is loosely based on the Fedora
	and Gentoo
	wikis, both licensed under the CC-BY-SA
	 3.0 license.
	安全性
	If vulnerabilities are found in the upstream library
	 and fixed there, they might not be fixed in the library
	 bundled with the port. One reason could be that the
	 author is not aware of the problem. This means that the
	 porter must fix them, or upgrade to a non-vulnerable
	 version, and send a patch to the author. This all takes
	 time, which results in software being vulnerable longer
	 than necessary. This in turn makes it harder to
	 coordinate a fix without unnecessarily leaking
	 information about the vulnerability.

	臭蟲
	This problem is similar to the problem with security
	 in the last paragraph, but generally less severe.

	Forking
	It is easier for the author to fork the upstream
	 library once it is bundled. While convenient on first
	 sight, it means that the code diverges from upstream
	 making it harder to address security or other problems
	 with the software. A reason for this is that patching
	 becomes harder.
Another problem of forking is that because code
	 diverges from upstream, bugs get solved over and over
	 again instead of just once at a central location. This
	 defeats the idea of open source software in the first
	 place.

	Symbol collision
	When a library is installed on the system, it might
	 collide with the bundled version. This can cause
	 immediate errors at compile or link time. It can also
	 cause errors when running the program which might be
	 harder to track down. The latter problem could be
	 caused because the versions of the two libraries are
	 incompatible.

	Licensing
	When bundling projects from different sources,
	 license issues can arise more easily, especially when
	 licenses are incompatible.

	浪費資源
	Bundled libraries waste resources on several levels.
	 It takes longer to build the actual application,
	 especially if these libraries are already present on the
	 system. At run-time, they can take up unnecessary
	 memory when the system-wide library is already loaded by
	 one program and the bundled library is loaded by another
	 program.

	浪費努力
	When a library needs patches for FreeBSD, these patches
	 have to be duplicated again in the bundled library.
	 This wastes developer time because the patches might not
	 apply cleanly. It can also be hard to notice that these
	 patches are required in the first place.

6.2.2. What to do About Bundled Libraries
Whenever possible, use the unbundled version of the
	library by adding a LIB_DEPENDS to the
	port. If such a port does not exist yet, consider creating
	it.
Only use bundled libraries if the upstream has a
	good track record on security and using unbundled versions
	leads to overly complex patches.
注意:
In some very special cases, for example emulators, like
	 Wine, a port has to bundle
	 libraries, because they are in a different architecture, or
	 they have been modified to fit the software's use. In that
	 case, those libraries should not be exposed to other ports
	 for linking. Add BUNDLE_LIBS=yes to the
	 port's Makefile. This will tell
	 pkg(8) to not compute provided libraries. Always ask
	 the Ports Management Team <portmgr@FreeBSD.org> before adding this to a port.

6.3. 共用函式庫
If the port installs one or more shared libraries, define
 a USE_LDCONFIG make variable, which will
 instruct a bsd.port.mk to run
 ${LDCONFIG} -m on the directory
 where the new library is installed (usually
 PREFIX/lib) during
 post-install target to register it
 into the shared library cache. This variable, when defined,
 will also facilitate addition of an appropriate
 @exec /sbin/ldconfig -m and
 @unexec /sbin/ldconfig -R pair into
 pkg-plist, so that a user who
 installed the package can start using the shared library
 immediately and de-installation will not cause the system to
 still believe the library is there.
USE_LDCONFIG=	yes
The default directory can be overridden by
 setting USE_LDCONFIG to a list of
 directories into which shared libraries are to be installed.
 For example, if the port installs shared libraries into
 PREFIX/lib/foo and
 PREFIX/lib/bar
 use this in
 Makefile:
USE_LDCONFIG=	${PREFIX}/lib/foo ${PREFIX}/lib/bar
Please double-check, often this is not necessary at all or
 can be avoided through -rpath or setting
 LD_RUN_PATH during linking (see
 lang/moscow_ml for an
 example), or through a shell-wrapper which sets
 LD_LIBRARY_PATH before invoking the binary,
 like www/seamonkey
 does.
When installing 32-bit libraries on 64-bit system, use
 USE_LDCONFIG32 instead.
If the software uses autotools, and specifically
 libtool, add USES=libtool.
When the major library version number increments in the
 update to the new port version, all other ports that link to
 the affected library must have their
 PORTREVISION incremented, to force
 recompilation with the new library version.
6.4. Ports with Distribution Restrictions or Legal
 Concerns
Licenses vary, and some of them place restrictions on how
 the application can be packaged, whether it can be sold for
 profit, and so on.
重要:
It is the responsibility of a porter to read the
	licensing terms of the software and make sure that the
	FreeBSD project will not be held accountable for violating
	them by redistributing the source or compiled binaries
	either via FTP/HTTP or CD-ROM. If in doubt, please contact
	the FreeBSD ports mailing list.

In situations like this, the variables described in the
 next sections can be set.
6.4.1. NO_PACKAGE
This variable indicates that we may not generate a
	binary package of the application. For instance, the
	license may disallow binary redistribution, or it may
	prohibit distribution of packages created from patched
	sources.
However, the port's DISTFILES may be
	freely mirrored on FTP/HTTP. They may also be distributed
	on a CD-ROM (or similar media) unless
	NO_CDROM is set as well.
If the
	binary package is not generally useful, and the application
	must always be compiled from the source code, use
	NO_PACKAGE. For
	example, if the application has configuration information
	that is site specific hard coded into it at compile time,
	set NO_PACKAGE.
Set NO_PACKAGE to a string
	describing the reason why the package cannot be
	generated.
6.4.2. NO_CDROM
This variable alone indicates that, although we are
	allowed to generate binary packages, we may put neither
	those packages nor the port's DISTFILES
	onto a CD-ROM (or similar media) for resale. However, the
	binary packages and the port's DISTFILES
	will still be available via FTP/HTTP.
 If this variable is set along with
	NO_PACKAGE, then only the port's
	DISTFILES will be available, and only via
	FTP/HTTP.
Set NO_CDROM to a string
	describing the reason why the port cannot be redistributed
	on CD-ROM. For instance, use this if the port's
	license is for “non-commercial” use
	only.
6.4.3. NOFETCHFILES
Files defined in NOFETCHFILES
	are not fetchable from any of
	MASTER_SITES. An example of such a file
	is when the file is supplied on CD-ROM by the vendor.
Tools which check for the availability of these files
	on MASTER_SITES have to ignore these
	files and not report about them.
6.4.4. RESTRICTED
Set this variable alone if the application's license
	permits neither mirroring the application's
	DISTFILES nor distributing the binary
	package in any way.
Do not set NO_CDROM or
	NO_PACKAGE along with
	RESTRICTED, since the latter variable
	implies the former ones.
Set RESTRICTED to a string
	describing the reason why the port cannot be redistributed.
	Typically, this indicates that the port contains proprietary
	software and that the user will need to manually download
	the DISTFILES, possibly after registering
	for the software or agreeing to accept the terms of an
	EULA.
6.4.5. RESTRICTED_FILES
When RESTRICTED or
	NO_CDROM is set, this variable defaults
	to ${DISTFILES} ${PATCHFILES}, otherwise
	it is empty. If only some of the distribution files are
	restricted, then set this variable to list them.
6.4.6. LEGAL_TEXT
If the port has legal concerns not addressed by the
	above variables, set LEGAL_TEXT
	to a string explaining the concern. For
	example, if special permission was obtained for FreeBSD to
	redistribute the binary, this variable must indicate
	so.
6.4.7. /usr/ports/LEGAL 和 LEGAL
A port which sets any of the above variables must also
	be added to /usr/ports/LEGAL. The
	first column is a glob which matches the restricted
	distfiles. The second column is the port's origin. The
	third column is the output of
	make -VLEGAL.
6.4.8. 範例
The preferred way to state "the distfiles for this port
	must be fetched manually" is as follows:
.if !exists(${DISTDIR}/${DISTNAME}${EXTRACT_SUFX})
IGNORE=	may not be redistributed because of licensing reasons. Please visit some-website to accept their license and download ${DISTFILES} into ${DISTDIR}
.endif
This both informs the user, and sets the proper metadata
	on the user's machine for use by automated programs.
Note that this stanza must be preceded by an inclusion
	of bsd.port.pre.mk.
6.5. Building Mechanisms
6.5.1. Building Ports in Parallel
The FreeBSD ports framework supports parallel building
	using multiple make sub-processes, which
	allows SMP systems to utilize all of
	their available CPU power, allowing port
	builds to be faster and more effective.
This is achieved by passing -jX flag
	to make(1) running on vendor code. This is the default
	build behavior of ports. Unfortunately, not all ports
	handle parallel building well and it may be required to
	explicitly disable this feature by adding the
	MAKE_JOBS_UNSAFE=yes variable. It is
	used when a port is known to be broken with
	-jX.
6.5.2. make, gmake, fmake, 和 imake
Several differing make
	implementations exist. Ported software often requires a
	particular implementation, like GNU
	make, known in FreeBSD as
	gmake, or fmake, the
	legacy FreeBSD make.
If the port uses GNU make,
	add gmake to USES. If
	the legacy FreeBSD make is needed, add
	fmake there.
MAKE_CMD can be used to reference the
	specific command configured by the USES
	setting in the port's Makefile. In
	rare cases when more than one make
	implementation is listed in USES, the
	variables GMAKE (for the
	GNU version) or FMAKE
	(for the legacy FreeBSD version) are available.
	Only use MAKE_CMD within the
	application Makefiles in
	WRKSRC to call the
	make implementation expected by the
	ported software.
If the port is an X application that uses
	imake to create
	Makefiles from
	Imakefiles, set USES=
	 imake.. See the USES=imake
	section of 章 15, Using USES
 Macros for more details.
If the port's source Makefile has
	something other than all as the
	main build target, set ALL_TARGET
	accordingly. The same goes for
	install and
	INSTALL_TARGET.
6.5.3. configure Script
If the port uses the configure
	script to generate Makefile from
	Makefile.in, set
	GNU_CONFIGURE=yes. To give
	extra arguments to the configure script
	(the default argument is --prefix=${PREFIX}
	 --infodir=${PREFIX}/${INFO_PATH}
	 --mandir=${MANPREFIX}/man
	 --build=${CONFIGURE_TARGET}), set those
	extra arguments in CONFIGURE_ARGS. Extra
	environment variables can be passed using
	CONFIGURE_ENV.
表格 6.1. Variables for Ports That Use
	 configure
	Variable	Means
	GNU_CONFIGURE	The port uses configure
		script to prepare build.
	HAS_CONFIGURE	Same as GNU_CONFIGURE,
		except default configure target is not added to
		CONFIGURE_ARGS.
	CONFIGURE_ARGS	Additional arguments passed to
		configure script.
	CONFIGURE_ENV	Additional environment variables to be set
		for configure script run.
	CONFIGURE_TARGET	Override default configure target. Default
		value is
		${MACHINE_ARCH}-portbld-freebsd${OSREL}.

6.5.4. Using cmake
For ports that use CMake,
	define USES= cmake, or
	USES= cmake:outsource to build in a
	separate directory (see below).
表格 6.2. Variables for Ports That Use
	 cmake
	Variable	Means
	CMAKE_ARGS	Port specific CMake
		flags to be passed to the cmake
		binary.
	CMAKE_BUILD_TYPE	Type of build (CMake
		predefined build profiles). Default is
		Release, or
		Debug if
		WITH_DEBUG is set.
	CMAKE_ENV	Environment variables to be set for the
		cmake binary. Default is
		${CONFIGURE_ENV}.
	CMAKE_SOURCE_PATH	Path to the source directory. Default is
		${WRKSRC}.

表格 6.3. Variables the Users Can Define for
	 cmake Builds
	Variable	Means
	CMAKE_VERBOSE	Enable verbose build output. Default not set,
		unless BATCH or
		PACKAGE_BUILDING are set.
	CMAKE_NOCOLOR	Disables color build output. Default not set,
		unless BATCH or
		PACKAGE_BUILDING are set.

CMake supports these
	build profiles: Debug,
	Release,
	RelWithDebInfo and
	MinSizeRel. Debug and
	Release profiles respect system
	*FLAGS, RelWithDebInfo
	and MinSizeRel will set
	CFLAGS to -O2 -g and
	-Os -DNDEBUG correspondingly. The
	lower-cased value of CMAKE_BUILD_TYPE is
	exported to PLIST_SUB and must be
	used if the port installs
	*.cmake
	depending on the build type (see
	deskutils/strigi for an
	example). Please note that some projects may define their own
	build profiles and/or force particular build type by setting
	CMAKE_BUILD_TYPE in
	CMakeLists.txt. To make a port for such
	a project respect CFLAGS and
	WITH_DEBUG, the
	CMAKE_BUILD_TYPE definitions must be
	removed from those files.
Most CMake-based projects
	support an out-of-source method of building. The
	out-of-source build for a port can be requested by using the
	:outsource suffix. When enabled,
	CONFIGURE_WRKSRC,
	BUILD_WRKSRC and
	INSTALL_WRKSRC will be set to
	${WRKDIR}/.build and this
	directory will be used to keep all files generated during
	configuration and build stages, leaving the source directory
	intact.
範例 6.1. USES= cmake Example
This snippet demonstrates the use of
	 CMake for a port.
	 CMAKE_SOURCE_PATH is not usually
	 required, but can be set when the sources are not located
	 in the top directory, or if only a subset of the project
	 is intended to be built by the port.
USES=			cmake:outsource
CMAKE_SOURCE_PATH=	${WRKSRC}/subproject

6.5.5. Using scons
If the port uses SCons,
	define USE_SCONS=yes.
表格 6.4. Variables for Ports That Use
	 scons
	Variable	Means
	SCONS_ARGS	Port specific SCons flags passed to the SCons
		environment.
	SCONS_BUILDENV	Variables to be set in system
		environment.
	SCONS_ENV	Variables to be set in SCons
		environment.
	SCONS_TARGET	Last argument passed to SCons, similar to
		MAKE_TARGET.

To make third party SConstruct
	respect everything that is passed to SCons in
	SCONS_ENV (that is, most importantly,
	CC/CXX/CFLAGS/CXXFLAGS), patch
	SConstruct so build
	Environment is constructed like
	this:
env = Environment(**ARGUMENTS)
It may be then modified with
	env.Append and
	env.Replace.
6.6. 使用 GNU Autotools
6.6.1. 楔子
The various GNU autotools provide an abstraction
	mechanism for building a piece of software over a wide
	variety of operating systems and machine architectures.
	Within the Ports Collection, an individual port can make use
	of these tools via a simple construct:
USE_AUTOTOOLS=	tool[:env] ...
At the time of writing, tool
	can be one of autoconf,
	autoheader, automake,
	aclocal, libtoolize.
	It can also be one the older
	legacy of autoconf213,
	autoheader213,
	automake14,
	aclocal14.
env is used to specify that the
	environmental variables are needed. It also adds a build
	dependency on the tool. The relevant tool is
	not ran as part of the
	run-autotools target.
Multiple tools can be specified at once, either by
	including them all on a single line, or using the
	+= Makefile construct.
6.6.2. libtool and
	libtoolize
Ports shipping with their own copy of libtool (search for
	a file named ltmain.sh) need to have
	USES=libtool. If a port has
	USE_AUTOTOOLS=libtoolize it probably also
	needs USES=libtool. See the USES=libtool section in 章 15, Using USES
 Macros for more details.
6.6.3. libltdl.so
Some ports make use of the libltdl.so
	library package, which is part of the
	libtool suite. Use of this library does
	not automatically necessitate the use of
	libtool itself. If the port needs
	libltdl.so, add a dependency on
	it:
LIB_DEPENDS=	libltdl.so:${PORTSDIR}/devel/libltdl
6.6.4. autoconf and
	autoheader
Some ports do not contain a configure script, but do
	contain an autoconf template in
	configure.ac. Use these
	assignments to let autoconf
	create the configure script, and also have
	autoheader create template headers for
	use by the configure script.
USE_AUTOTOOLS=	autoconf[:env]
and
USE_AUTOTOOLS=	autoheader
which also implies the use of
	autoconf.
The additional optional variables
	AUTOCONF_ARGS and
	AUTOHEADER_ARGS can be overridden by the
	port Makefile if specifically
	requested. Most ports are unlikely to need this. See
	bsd.autotools.mk for further
	details.
6.6.5. automake and
	aclocal
Some packages only contain
	Makefile.am. These have to be
	converted into Makefile.in using
	automake, and the further processed by
	configure to generate an actual
	Makefile.
Similarly, packages occasionally do not ship with
	an included aclocal.m4, again
	required to build the software. This can be achieved with
	aclocal, which scans
	configure.ac or
	configure.in.
aclocal has a similar relationship to
	automake as autoheader
	does to autoconf, described in the
	previous section. aclocal implies the
	use of automake, thus we have:
USE_AUTOTOOLS=	automake[:env]
and
USE_AUTOTOOLS=	aclocal
As with autoconf and
	autoheader, both
	automake and aclocal
	have optional argument variables,
	AUTOMAKE_ARGS and
	ACLOCAL_ARGS respectively, which may be
	overridden by the port Makefile if
	required.
6.7. 使用 GNU gettext
6.7.1. 基本用法
If the port requires gettext, set
	USES= gettext, and the port will inherit
	a dependency on libintl.so from
	devel/gettext. Other
	values for gettext usage are listed in
	USES=gettext.
A rather common case is a port using
	gettext and configure.
	Generally, GNU configure should be able
	to locate gettext automatically.
USES=	gettext
GNU_CONFIGURE=	yes
If it ever fails to, hints at the location of
	gettext can be passed in
	CPPFLAGS and LDFLAGS as
	follows:
USES=	gettext
CPPFLAGS+=	-I${LOCALBASE}/include
LDFLAGS+=	-L${LOCALBASE}/lib

GNU_CONFIGURE=	yes
6.7.2. Optional Usage
Some software products allow for disabling
	NLS. For example, through passing
	--disable-nls to
	configure. In that case, the port must use
	gettext conditionally, depending on the
	status of the NLS option. For ports of low
	to medium complexity, use this idiom:
GNU_CONFIGURE=		yes

OPTIONS_DEFINE=		NLS
OPTIONS_SUB=		yes

NLS_USES=		gettext
NLS_CONFIGURE_ENABLE=	nls

.include <bsd.port.mk>
Or using the older way of using options:
GNU_CONFIGURE=		yes

OPTIONS_DEFINE=		NLS

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MNLS}
USES+=			gettext
PLIST_SUB+=		NLS=""
.else
CONFIGURE_ARGS+=	--disable-nls
PLIST_SUB+=		NLS="@comment "
.endif

.include <bsd.port.mk>
The next item on the to-do list is to arrange so that
	the message catalog files are included in the packing list
	conditionally. The Makefile part of
	this task is already provided by the idiom. It is explained
	in the section on advanced
	 pkg-plist practices. In a
	nutshell, each occurrence of %%NLS%% in
	pkg-plist will be replaced by
	“@comment ” if NLS is
	disabled, or by a null string if NLS is enabled.
	Consequently, the lines prefixed by
	%%NLS%% will become mere comments in the
	final packing list if NLS is off; otherwise the prefix will
	be just left out. Then insert
	%%NLS%% before each path to a message
	catalog file in pkg-plist. For
	example:
%%NLS%%share/locale/fr/LC_MESSAGES/foobar.mo
%%NLS%%share/locale/no/LC_MESSAGES/foobar.mo
In high complexity cases, more advanced techniques
	may be needed, such as
	dynamic packing list
	 generation.
6.7.3. Handling Message Catalog Directories
There is a point to note about installing message
	catalog files. The target directories for them, which
	reside under
	LOCALBASE/share/locale,
	must not be created and removed by a port. The most
	popular languages have their respective directories listed
	in
	PORTSDIR/Templates/BSD.local.dist.
	The directories for many other languages are governed by the
	devel/gettext port.
	Consult its pkg-plist and see whether
	the port is going to install a message catalog file for a
	unique language.
6.8. 使用 Perl
If MASTER_SITES is set to
 CPAN, the correct subdirectory is usually
 selected automatically. If the default subdirectory is wrong,
 CPAN/Module can be used to change it.
 MASTER_SITES can also be set to the old
 MASTER_SITE_PERL_CPAN, then the preferred
 value of MASTER_SITE_SUBDIR is the
 top-level hierarchy name. For example, the recommended value
 for p5-Module-Name is
 Module. The top-level hierarchy can be
 examined at cpan.org.
 This keeps the port working when the author of the module
 changes.
The exception to this rule is when the relevant directory
 does not exist or the distfile does not exist in that
 directory. In such case, using author's id as
 MASTER_SITE_SUBDIR is allowed.
 The CPAN:AUTHOR macro can be used, which will
 be translated to the hashed author directory. For example,
 CPAN:AUTHOR will be converted to
 authors/id/A/AU/AUTHOR.
When a port needs Perl support,
 it must set USES=perl5 with the optional
 USE_PERL5 described in the perl5 USES description.
表格 6.5. Read-Only Variables for Ports That Use
	Perl
	唯讀變數	Means
	PERL	The full path of the Perl 5 interpreter,
	 either in the system or installed from a port, but
	 without the version number. Use this when the software
	 needs the path to the Perl
	 interpreter. To replace
	 “#!”lines in scripts,
	 use USES=shebangfix.
	PERL_VERSION	The full version of Perl installed (for example,
	 5.8.9).
	PERL_LEVEL	The installed Perl version as
	 an integer of the form MNNNPP
	 (for example, 500809).
	PERL_ARCH	Where Perl stores architecture
	 dependent libraries. Defaults to
	 ${ARCH}-freebsd.
	PERL_PORT	Name of the Perl port that is installed (for
	 example, perl5).
	SITE_PERL	Directory name where site specific
	 Perl packages go. This value is
	 added to PLIST_SUB.

注意:
Ports of Perl modules which do not have an official
	website must link to cpan.org in
	the WWW line of pkg-descr. The
	preferred URL form is
	http://search.cpan.org/dist/Module-Name/
	(including the trailing slash).

注意:
Do not use ${SITE_PERL} in dependency
	declarations. Doing so assumes that
	perl5.mk has been included, which is
	not always true. Ports depending on this port will have
	incorrect dependencies if this port's files move later in an
	upgrade. The right way to declare Perl module dependencies
	is shown in the example below.

範例 6.2. Perl 相依性範例
p5-IO-Tee>=0.64:${PORTSDIR}/devel/p5-IO-Tee

For Perl ports that install manual pages, the macro
 PERL5_MAN3 can be used
 inside pkg-plist. For example,
lib/perl5/5.14/man/man3/AnyEvent::I3.3.gz
can be replaced with
%%PERL5_MAN3%%/AnyEvent::I3.3.gz
注意:
There are no PERL5_MANx macros for the
	other sections (x in
	1, 2 and
	4 to 9) because those
	get installed in the regular directories.

6.9. 使用 X11
6.9.1. X.Org Components
The X11 implementation available in The Ports Collection
	is X.Org. If the application depends on X components, set
	USE_XORG to the list of required
	components. Available components, at the time of writing,
	are:
bigreqsproto compositeproto damageproto dmx
	 dmxproto dri2proto dri3proto evieproto fixesproto
	 fontcacheproto fontenc fontsproto fontutil glproto ice
	 inputproto kbproto libfs oldx pciaccess pixman presentproto
	 printproto randrproto recordproto renderproto resourceproto
	 scrnsaverproto sm trapproto videoproto x11 xau xaw xaw6 xaw7
	 xbitmaps xcb xcmiscproto xcomposite xcursor xdamage xdmcp
	 xevie xext xextproto xf86bigfontproto xf86dgaproto
	 xf86driproto xf86miscproto xf86rushproto xf86vidmodeproto
	 xfixes xfont xfontcache xft xi xinerama xineramaproto
	 xkbfile xkbui xmu xmuu xorg-macros xorg-server xp xpm
	 xprintapputil xprintutil xproto xproxymngproto xrandr
	 xrender xres xscrnsaver xshmfence xt xtrans xtrap xtst xv
	 xvmc xxf86dga xxf86misc xxf86vm.
Always up-to-date list can be found in
	/usr/ports/Mk/bsd.xorg.mk.
The Mesa Project is an effort to provide free OpenGL
	implementation. To specify a dependency on various
	components of this project, use USE_GL.
	Valid options are:
	egl, gl, glesv2, glew, glu, glut, glw and
	linux. For backwards compatibility, the
	value of yes maps to
	glu.
範例 6.3. USE_XORG 範例
USE_XORG=	xrender xft xkbfile xt xaw
USE_GL=		glu

表格 6.6. Variables for Ports That Use X
	USES= imake	The port uses imake.
	XMKMF	Set to the path of xmkmf if
		not in the PATH. Defaults to
		xmkmf -a.

範例 6.4. 使用 X11 相關變數
Use some X11 libraries
USE_XORG=	x11 xpm

6.9.2. Ports That Require Motif
If the port requires a Motif library, define
	USES= motif in the
	Makefile. Default Motif implementation
	is
	x11-toolkits/open-motif.
	Users can choose
	x11-toolkits/lesstif
	instead by setting WANT_LESSTIF
	in their make.conf.
MOTIFLIB will be set by
	motif.mk to reference the
	appropriate Motif library. Please patch the source of the
	port to use ${MOTIFLIB} wherever
	the Motif library is referenced in the original
	Makefile or
	Imakefile.
There are two common cases:
	If the port refers to the Motif library as
	 -lXm in its
	 Makefile or
	 Imakefile, substitute
	 ${MOTIFLIB} for it.

	If the port uses XmClientLibs in
	 its Imakefile, change it to
	 ${MOTIFLIB} ${XTOOLLIB}
	 ${XLIB}.

Note that MOTIFLIB (usually) expands
	to -L/usr/local/lib -lXm -lXp or
	/usr/local/lib/libXm.a, so there is no
	need to add -L or -l
	in front.
6.9.3. X11 字型
If the port installs fonts for the X Window System, put
	them in
	LOCALBASE/lib/X11/fonts/local.
6.9.4. Getting a Fake DISPLAY with Xvfb
Some applications require a working X11 display for
	compilation to succeed. This pose a problem for machines
	that operate headless. When this variable is used,
	the build infrastructure will start the virtual framebuffer
	X server. The working DISPLAY is then passed
	to the build. See USES=display
	for the possible arguments.
USES=	display
6.9.5. Desktop Entries
Desktop entries (a
	 Freedesktop standard) provide a way to
	automatically adjust desktop features when a new program is
	installed, without requiring user intervention. For
	example, newly-installed programs automatically appear in
	the application menus of compatible desktop environments.
	Desktop entries originated in the
	GNOME desktop environment, but
	are now a standard and also work with
	KDE and
	Xfce. This bit of automation
	provides a real benefit to the user, and desktop entries are
	encouraged for applications which can be used in a desktop
	environment.
6.9.5.1. Using Predefined .desktop
	 Files
Ports that include predefined
	 *.desktop
	 must include those files in pkg-plist
	 and install them in the
	 $LOCALBASE/share/applications
	 directory. The INSTALL_DATA
	 macro is useful for installing these
	 files.
6.9.5.2. Updating Desktop Database
If a port has a MimeType entry in its
	 portname.desktop,
	 the desktop database must be updated after install and
	 deinstall. To do this, define USES=
	 desktop-file-utils.
6.9.5.3. Creating Desktop Entries with
	 DESKTOP_ENTRIES
Desktop entries can be easily created for applications
	 by using DESKTOP_ENTRIES. A
	 file named
	 name.desktop
	 will be created, installed, and added to
	 pkg-plist automatically. Syntax
	 is:
DESKTOP_ENTRIES=	"NAME" "COMMENT" "ICON" "COMMAND" "CATEGORY" StartupNotify
The list of possible categories is available on the
	 Freedesktop
	 website. StartupNotify
	 indicates whether the application is compatible with
	 startup notifications. These are
	 typically a graphic indicator like a clock that appear at
	 the mouse pointer, menu, or panel to give the user an
	 indication when a program is starting. A program that is
	 compatible with startup notifications clears the indicator
	 after it has started. Programs that are not compatible
	 with startup notifications would never clear the indicator
	 (potentially confusing and infuriating the user), and
	 must have StartupNotify set to
	 false so the indicator is not shown at
	 all.
Example:
DESKTOP_ENTRIES=	"ToME" "Roguelike game based on JRR Tolkien's work" \
			"${DATADIR}/xtra/graf/tome-128.png" \
			"tome -v -g" "Application;Game;RolePlaying;" \
			false
6.10. 使用 GNOME
6.10.1. 楔子
This chapter explains the GNOME
	framework as used by ports. The framework can be loosely
	divided into the base components, GNOME
	desktop components, and a few special macros that simplify the
	work of port maintainers.
While developing a port or changing one, please set
DEVELOPER=yes

	in the environment or in /etc/make.conf.
	This causes the ports framework to enable additional
	checks.
6.10.2. Using USE_GNOME
Adding this variable to the port allows the use of
	the macros and components defined in
	bsd.gnome.mk. The code in
	bsd.gnome.mk adds the needed
	build-time, run-time or library dependencies
	or the handling of special files.
	GNOME applications under FreeBSD use the
	USE_GNOME infrastructure. Include all the
	needed components as a space-separated list. The
	USE_GNOME components are divided into
	these virtual lists: basic components, GNOME 3 components
	and legacy components. If the port needs only GTK3 libraries,
	this is the shortest way to define it:
USE_GNOME=	gtk30
USE_GNOME components automatically
	add the dependencies they need. Please see
	節 6.11, “GNOME 元件” for an exhaustive
	list of all USE_GNOME components and which
	other components they imply and their dependencies.
Here is an example Makefile for a
	GNOME port that uses many of the techniques outlined in this
	document. Please use it as a guide for creating new
	ports.
$FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $

PORTNAME=	 regexxer
PORTVERSION=	 0.10
CATEGORIES=	 devel textproc gnome
MASTER_SITES=	 GNOME

MAINTAINER=	 kwm@FreeBSD.org
COMMENT=	 Interactive tool for performing search and replace operations

USES=		 gettext gmake pathfix pkgconfig tar:xz
GNU_CONFIGURE=	yes
USE_GNOME=	 gnomeprefix intlhack gtksourceviewmm3
CPPFLAGS+=	 -I${LOCALBASE}/include
LDFLAGS+=	 -L${LOCALBASE}/lib
INSTALLS_ICONS= yes

GLIB_SCHEMAS=	 org.regexxer.gschema.xml

.include <bsd.port.mk>
注意:
The USE_GNOME macro without any
	 arguments does not add any dependencies to the port.
	 USE_GNOME cannot be set after
	 bsd.port.pre.mk.

6.10.3. 變數
This section explains which macros are available and how
	they are used. Like they are used in the above example. The
	節 6.11, “GNOME 元件” has a more in-depth
	explanation. USE_GNOME has to be set for
	these macros to be of use.
	INSTALLS_ICONS
	GTK+ ports which install
	 Freedesktop-style icons to
	 ${LOCALBASE}/share/icons should use
	 this macro to ensure that the icons are cached and will
	 display correctly. The cache file is named
	 icon-theme.cache. Do not include
	 that file in pkg-plist. This macro
	 handles that automatically. This macro is not needed
	 for Qt, which use a
	 internal method.

	GLIB_SCHEMAS
	List of all the glib schema files the port installs.
	 The macro will add the files to the port plist and
	 handle the registration of these files on install and
	 deinstall.
The glib schema files are written in
	 XML and end with the
	 gschema.xml extension. They are
	 installed in the
	 share/glib-2.0/schemas/ directory.
	 These schema files contain all application config values
	 with there default settings. The actual database used
	 by the applications is built by
	 glib-compile-schema, which is
	 run by the GLIB_SCHEMAS macro.
GLIB_SCHEMAS=foo.gschema.xml
注意:
Do not add glib schemas to the
		pkg-plist. If they are listed in
		pkg-plist, they will not be
		registered and the applications might not work
		properly.

	GCONF_SCHEMAS
	List all the gconf schema files. The macro will add
	 the schema files to the port plist and will handle their
	 registration on install and deinstall.
GConf is the XML-based database
	 that virtually all GNOME applications use for storing
	 their settings. These files are installed into the
	 etc/gconf/schemas directory. This
	 database is defined by installed schema files that are
	 used to generate %gconf.xml key
	 files. For each schema file installed by the port,
	 there be an entry in the
	 Makefile:
GCONF_SCHEMAS=my_app.schemas my_app2.schemas my_app3.schemas
注意:
Gconf schemas are listed in the
		GCONF_SCHEMAS macro rather than
		pkg-plist. If they are listed in
		pkg-plist, they will not be
		registered and the applications might not work
		properly.

	INSTALLS_OMF
	Open Source Metadata Framework
	 (OMF) files are commonly used by
	 GNOME 2 applications. These files contain the
	 application help file information, and require special
	 processing by ScrollKeeper/rarian. To properly register
	 OMF files when installing GNOME
	 applications from packages, make sure that
	 omf files are listed in
	 pkg-plist and that the port
	 Makefile has
	 INSTALLS_OMF defined:
INSTALLS_OMF=yes
When set, bsd.gnome.mk
	 automatically scans pkg-plist and
	 adds appropriate @exec and
	 @unexec directives for each
	 .omf to track in the
	 OMF registration database.

6.11. GNOME 元件
For further help with a GNOME port, look at some of the
 existing
	ports for examples. The
 FreeBSD GNOME
	page has contact information if more help is
 needed. The components are divided into GNOME components
 that are currently in use and legacy components. If the
 component supports argument, they are listed between
 parenthesis in the description. The first is the default.
 "Both" is shown if the component defaults to adding to both
 build and run dependencies.
表格 6.7. GNOME 元件
	元件	相關程式	描述
	atk	accessibility/atk	Accessibility toolkit (ATK)
	atkmm	accessibility/atkmm	c++ bindings for atk
	cairo	graphics/cairo	Vector graphics library with cross-device output
	 support
	cairomm	graphics/cairomm	c++ bindings for cairo
	dconf	devel/dconf	Configuration database system
	 (both, build, run)
	evolutiondataserver3	databases/evolution-data-server	Data backends for the Evolution integrated
	 mail/PIM suite
	gdkpixbuf2	graphics/gdk-pixbuf2	Graphics library for GTK+
	glib20	devel/glib20	GNOME core library
	 glib20
	glibmm	devel/glibmm	c++ bindings for glib20
	gnomecontrolcenter3	sysutils/gnome-control-center	GNOME 3 Control Center
	gnomedesktop3	x11/gnome-desktop	GNOME 3 桌面 UI 函式庫
	gsound	audio/gsound	GObject library for playing system sounds
	 (both, build, run)
	gtk-update-icon-cache	graphics/gtk-update-icon-cache	Gtk-update-icon-cache utility from the Gtk+
	 toolkit
	gtk20	x11-toolkits/gtk20	Gtk+ 2 toolkit
	gtk30	x11-toolkits/gtk30	Gtk+ 3 toolkit
	gtkmm20	x11-toolkits/gtkmm20	c++ bindings 2.0 for the gtk20 toolkit
	gtkmm24	x11-toolkits/gtkmm24	c++ bindings 2.4 for the gtk20 toolkit
	gtkmm30	x11-toolkits/gtkmm30	c++ bindings 3.0 for the gtk30 toolkit
	gtksourceview2	x11-toolkits/gtksourceview2	Widget that adds syntax highlighting to
	 GtkTextView
	gtksourceview3	x11-toolkits/gtksourceview3	Text widget that adds syntax highlighting to
	 the GtkTextView widget
	gtksourceviewmm3	x11-toolkits/gtksourceviewmm3	c++ bindings for the gtksourceview3 library
	gvfs	devel/gvfs	GNOME 虛擬檔案系統
	intltool	textproc/intltool	Tool for internationalization (also see
	 intlhack)
	introspection	devel/gobject-introspection	Basic introspection bindings and tools to
	 generate introspection bindings. Most of the time
	 :build is enough, :both/:run is only need for
	 applications that use introspection bindings.
	 (both, build, run)
	libgda5	databases/libgda5	Provides uniform access to different kinds of
	 data sources
	libgda5-ui	databases/libgda5-ui	UI library from the libgda5 library
	libgdamm5	databases/libgdamm5	c++ bindings for the libgda5 library
	libgsf	devel/libgsf	Extensible I/O abstraction for dealing with
	 structured file formats
	librsvg2	graphics/librsvg2	Library for parsing and rendering SVG
	 vector-graphic files
	libsigc++20	devel/libsigc++20	Callback Framework for C++
	libxml++26	textproc/libxml++26	c++ bindings for the libxml2 library
	libxml2	textproc/libxml2	XML parser library (both, build, run)
	libxslt	textproc/libxslt	XSLT C library (both, build, run)
	metacity	x11-wm/metacity	GNOME 視窗管理員
	nautilus3	x11-fm/nautilus	GNOME 檔案管理員
	pango	x11-toolkits/pango	Open-source framework for the layout and
	 rendering of i18n text
	pangomm	x11-toolkits/pangomm	c++ bindings for the pango library
	py3gobject3	devel/py3-gobject3	Python 3, GObject 3.0 bindings
	pygobject3	devel/py-gobject3	Python 2, GObject 3.0 bindings
	vte3	x11-toolkits/vte3	Terminal widget with improved accessibility and
	 I18N support

表格 6.8. GNOME Macro Components
	元件	描述
	gnomeprefix	Supply configure with
	 some default locations.
	intlhack	Same as intltool, but patches to make sure
	 share/locale/ is used. Please
	 only use when intltool alone is
	 not enough.
	referencehack	This macro is there to help splitting of the API or
	 reference documentation into its own port.

表格 6.9. GNOME Legacy Components
	元件	相關程式	描述
	atspi	accessibility/at-spi	Assistive Technology Service Provider
	 Interface
	esound	audio/esound	Enlightenment 音效套件
	gal2	x11-toolkits/gal2	Collection of widgets taken from GNOME 2
	 gnumeric
	gconf2	devel/gconf2	Configuration database system for GNOME 2
	gconfmm26	devel/gconfmm26	c++ bindings for gconf2
	gdkpixbuf	graphics/gdk-pixbuf	Graphics library for GTK+
	glib12	devel/glib12	glib 1.2 核心函式庫
	gnomedocutils	textproc/gnome-doc-utils	GNOME doc utils
	gnomemimedata	misc/gnome-mime-data	MIME and Application database for GNOME 2
	gnomesharp20	x11-toolkits/gnome-sharp20	GNOME 2 interfaces for the .NET runtime
	gnomespeech	accessibility/gnome-speech	GNOME 2 text-to-speech API
	gnomevfs2	devel/gnome-vfs	GNOME 2 虛擬檔案系統
	gtk12	x11-toolkits/gtk12	Gtk+ 1.2 toolkit
	gtkhtml3	www/gtkhtml3	Lightweight HTML rendering/printing/editing
	 engine
	gtkhtml4	www/gtkhtml4	Lightweight HTML rendering/printing/editing
	 engine
	gtksharp20	x11-toolkits/gtk-sharp20	GTK+ and GNOME 2 interfaces for the .NET
	 runtime
	gtksourceview	x11-toolkits/gtksourceview	Widget that adds syntax highlighting to
	 GtkTextView
	libartgpl2	graphics/libart_lgpl	Library for high-performance 2D graphics
	libbonobo	devel/libbonobo	Component and compound document system for
	 GNOME 2
	libbonoboui	x11-toolkits/libbonoboui	GUI frontend to the libbonobo component of
	 GNOME 2
	libgda4	databases/libgda4	Provides uniform access to different kinds of
	 data sources
	libglade2	devel/libglade2	GNOME 2 glade 函式庫
	libgnome	x11/libgnome	Libraries for GNOME 2, a GNU desktop
	 environment
	libgnomecanvas	graphics/libgnomecanvas	GNOME 2 圖形函式庫
	libgnomekbd	x11/libgnomekbd	GNOME 2 鍵盤共用函式庫
	libgnomeprint	print/libgnomeprint	Gnome 2 print support library
	libgnomeprintui	x11-toolkits/libgnomeprintui	Gnome 2 print support library
	libgnomeui	x11-toolkits/libgnomeui	Libraries for the GNOME 2 GUI, a GNU desktop
	 environment
	libgtkhtml	www/libgtkhtml	Lightweight HTML rendering/printing/editing
	 engine
	libgtksourceviewmm	x11-toolkits/libgtksourceviewmm	c++ binding of GtkSourceView
	libidl	devel/libIDL	Library for creating trees of CORBA IDL
	 file
	libsigc++12	devel/libsigc++12	Callback Framework for C++
	libwnck	x11-toolkits/libwnck	Library used for writing pagers and
	 taskslists
	libwnck3	x11-toolkits/libwnck3	Library used for writing pagers and
	 taskslists
	orbit2	devel/ORBit2	High-performance CORBA ORB with support for the
	 C language
	pygnome2	x11-toolkits/py-gnome2	Python bindings for GNOME 2
	pygobject	devel/py-gobject	Python 2, GObject 2.0 bindings
	pygtk2	x11-toolkits/py-gtk2	Set of Python bindings for GTK+
	pygtksourceview	x11-toolkits/py-gtksourceview	Python bindings for GtkSourceView 2
	vte	x11-toolkits/vte	Terminal widget with improved accessibility and
	 I18N support

表格 6.10. Deprecated Components: Do Not Use
	元件	描述
	HAVE_GNOME	Deprecated, do not use. Was used to check if a
	 component was installed. This was used for ports
	 that did not have
	 --enable/--disable
	 switches for their configure script. But the building
	 of parts of a port without a implicit request is
	 discouraged.
	WANT_GNOME	Deprecated, do not use. Was used by ports that
	 needed USE_GNOME for optional
	 dependencies, which where defined after
	 bsd.port.pre.mk. Since
	 USE_GNOME can be used after the
	 inclusion of bsd.port.options.mk,
	 there is little need for this macro any more.
	pangox-compat	pangox-compat has been deprecated and split off from the pango package.

6.12. 使用 Qt
6.12.1. 需要 Qt 的 Ports
The Ports Collection provides support for Qt 4 and Qt 5
	frameworks with
	USE_QTx,
	where x is
	4 or 5.
	Set USE_QTx
	to the list of required Qt components (libraries,
	tools, plugins). The Qt 4 and Qt 5 frameworks are quite
	similar. The main difference is the set of supported
	components.
The Qt framework exports a number of variables which can
	be used by ports, some of them listed below:
表格 6.11. Variables Provided to Ports That Use Qt
	QT_PREFIX	Set to the path where Qt was installed
		(${LOCALBASE}).
	QMAKE	Full path to qmake
		binary.
	LRELEASE	Full path to lrelease
		utility.
	MOC	Full path to moc.
	RCC	Full path to rcc.
	UIC	Full path to uic.
	QT_INCDIR	Qt include directory.
	QT_LIBDIR	Qt libraries path.
	QT_PLUGINDIR	Qt plugins path.

When using the Qt framework, these
	settings are deployed:
CONFIGURE_ARGS+=	--with-qt-includes=${QT_INCDIR} \
			--with-qt-libraries=${QT_LIBDIR} \
			--with-extra-libs=${LOCALBASE}/lib \
			--with-extra-includes=${LOCALBASE}/include

CONFIGURE_ENV+=	QTDIR="${QT_PREFIX}" QMAKE="${QMAKE}" \
		MOC="${MOC}" RCC="${RCC}" UIC="${UIC}" \
		QMAKESPEC="${QMAKESPEC}"

PLIST_SUB+=	QT_INCDIR=${QT_INCDIR_REL} \
		QT_LIBDIR=${QT_LIBDIR_REL} \
		QT_PLUGINDIR=${QT_PLUGINDIR_REL}
Some configure scripts do not support the arguments above.
	To suppress modification ofCONFIGURE_ENV
	and CONFIGURE_ARGS, set
	QT_NONSTANDARD.
6.12.2. Component Selection
Individual Qt tool and library dependencies must be
	specified in
	USE_QTx.
	Every component can be suffixed with
	_build or _run, the
	suffix indicating whether the dependency on the component is
	at buildtime or runtime. If unsuffixed, the component will be
	depended on at both build- and runtime. Usually, library
	components are specified unsuffixed, tool components
	are mostly specified with the _build suffix
	and plugin components are specified with the
	_run suffix. The most commonly used
	components are listed below (all available components are
	listed in _USE_QT_ALL,
	_USE_QT4_ONLY, and
	_USE_QT5_ONLY in
	/usr/ports/Mk/bsd.qt.mk):
表格 6.12. 可用的 Qt 函式庫元件
	名字	描述
	core	核心函式庫 (Qt 5 only)
	corelib	核心函式庫 (Qt 4 only)
	dbus	Qt DBus 函式庫
	gui	圖形使用者介面函式庫
	network	網路函式庫
	opengl	Qt OpenGL 函式庫
	script	script library
	sql	SQL 函式庫
	testlib	unit testing library
	webkit	Qt WebKit 函式庫
	xml	Qt XML 函式庫

To determine the libraries an application
	depends on, run ldd on the main
	executable after a successful compilation.
表格 6.13. Available Qt Tool Components
	名字	描述
	qmake	Makefile generator/build utility
	buildtools	build tools (moc,
		rcc), needed for almost
		every Qt application (Qt 5 only)
	linguisttools	localization tools: lrelease,
		lupdate (Qt 5 only)
	linguist	localization tools: lrelease,
		lupdate (Qt 4 only)
	moc	meta object compiler, needed for almost
		every Qt application at buildtime (Qt 4 only)
	rcc	resource compiler, needed if the application
		comes with *.rc or
		*.qrc files (Qt 4 only)
	uic	user interface compiler, needed if the
		application comes with *.ui
		files, in practice, every Qt
		application with a GUI (Qt 4 only)

表格 6.14. Available Qt Plugin Components
	名字	描述
	iconengines	SVG icon engine plugin, needed if the application
		ships SVG icons (Qt 4 only)
	imageformats	plugins for TGA, TIFF, and MNG
		image formats

範例 6.5. Selecting Qt 4 Components
In this example, the ported application uses the Qt 4
	 graphical user interface library, the Qt 4 core library,
	 all of the Qt 4 code generation tools and Qt 4's Makefile
	 generator. Since the gui library
	 implies a dependency on the core library,
	 corelib does not need to be specified.
	 The Qt 4 code generation tools moc,
	 uic and rcc, as well
	 as the Makefile generator qmake are
	 only needed at buildtime, thus they are specified with the
	 _build suffix:
USE_QT4=	gui moc_build qmake_build rcc_build uic_build

6.12.3. 使用 qmake
If the application provides a
	qmake project file
	(*.pro), define
	USES= qmake along with
	USE_QTx. Note
	that USES= qmake already implies a build
	dependency on qmake, therefore the qmake component can be
	omitted from
	USE_QTx.
	Similar to CMake,
	qmake supports out-of-source
	builds, which can be enabled by specifying the
	outsource argument (see USES= qmake
	 example).
表格 6.15. Variables for Ports That Use
	 qmake
	Variable	Means
	QMAKE_ARGS	Port specific qmake
		flags to be passed to the qmake
		binary.
	QMAKE_ENV	Environment variables to be set for the
		qmake binary. The default is
		${CONFIGURE_ENV}.
	QMAKE_SOURCE_PATH	Path to qmake project files
		(.pro). The default is
		${WRKSRC} if an
		out-of-source build is requested, empty
		otherwise.

範例 6.6. USES= qmake 範例
This snippet demonstrates the use of
	 qmake for a Qt 4 port:
USES=		qmake:outsource
USE_QT4=	moc_build
For a Qt 5 port:
USES=		qmake:outsource
USE_QT5=	buildtools_build

Qt applications are often written to be cross-platform
	and often X11/Unix is not the platform they are developed
	on, which in turn leads to certain loose ends,
	like:
	Missing additional include
	 paths. Many applications come with
	 system tray icon support, but neglect to look for
	 includes and/or libraries in the X11 directories. To add
	 directories to qmake's
	 include and library search paths via the command
	 line, use:
QMAKE_ARGS+=	INCLUDEPATH+=${LOCALBASE}/include \
		LIBS+=-L${LOCALBASE}/lib

	Bogus installation paths.
	 Sometimes data such as icons or .desktop files are by
	 default installed into directories which are not scanned
	 by XDG-compatible applications.
	 editors/texmaker is
	 an example for this - look at
	 patch-texmaker.pro in the
	 files directory of that port for a
	 template on how to remedy this directly in the
	 qmake project file.

6.13. 使用 KDE
6.13.1. KDE 4 Variable Definitions
If the application depends on KDE 4, set
	USE_KDE4 to the list of required
	components. _build and
	_run suffixes can be used to force
	components dependency type (for example,
	baseapps_run). If no suffix is set, a
	default dependency type will be used. To force both types,
	add the component twice with both suffixes (for example,
	automoc4_build automoc4_run). The most
	commonly used components are listed below (up-to-date
	components are documented at the top of
	/usr/ports/Mk/bsd.kde4.mk):
表格 6.16. 可用的 KDE 4 元件
	名字	描述
	kdehier	Hierarchy of common KDE directories
	kdelibs	KDE 核心函式庫
	kdeprefix	If set, port will be installed into
		${KDE4_PREFIX}
	automoc4	Build tool to automatically generate moc
		files
	akonadi	Storage server for KDE PIM data
	soprano	Library for Resource Description Framework
		(RDF)
	strigi	Strigi 桌面搜尋函式庫
	libkcddb	KDE CDDB (compact disc database) library
	libkcompactdisc	KDE library for interfacing with audio
		CDs
	libkdeedu	Libraries used by educational
		applications
	libkdcraw	KDE LibRaw 函式庫
	libkexiv2	KDE Exiv2 函式庫
	libkipi	KDE Image Plugin Interface
	libkonq	Konqueror 核心函式庫
	libksane	KDE SANE ("Scanner Access Now Easy")
		library
	pimlibs	Personal information management libraries
	kate	Advanced text editor framework
	marble	Virtual globe and world atlas
	okular	Universal document viewer
	korundum	KDE Ruby bindings
	perlkde	KDE Perl bindings
	pykde4	KDE Python bindings
	pykdeuic4	PyKDE user interface compiler
	smokekde	KDE SMOKE 函式庫

KDE 4 ports are installed into
	KDE4_PREFIX. This is
	achieved by specifying the kdeprefix
	component, which overrides the default
	PREFIX. The ports, however, respect any
	PREFIX set via the MAKEFLAGS
	environment variable and/or make
	arguments. Currently KDE4_PREFIX
	is identical to the default PREFIX,
	${LOCALBASE}.
範例 6.7. USE_KDE4 範例
This is a simple example for a KDE 4 port.
	 USES= cmake:outsource instructs the
	 port to utilize CMake, a
	 configuration tool widely used by KDE 4 projects (see
	 節 6.5.4, “Using cmake” for detailed usage).
	 USE_KDE4 brings dependency on KDE
	 libraries and makes port using
	 automoc4 at build stage.
	 Required KDE components and other dependencies can be
	 determined through configure log.
	 USE_KDE4 does not imply
	 USE_QT4. If a port requires some
	 Qt 4 components, specify them in
	 USE_QT4.
USES=		cmake:outsource
USE_KDE4=	kdelibs kdeprefix automoc4
USE_QT4=	moc_build qmake_build rcc_build uic_build

6.14. 使用 Java
6.14.1. 變數定義
If the port needs a Java™ Development Kit
	(JDK™) to either build, run or even
	extract the distfile, then define
	USE_JAVA.
There are several JDKs in the ports
	collection, from various vendors, and in several versions. If
	the port must use one of these versions, define which one.
	The most current version, and FreeBSD default is
	java/openjdk6.
表格 6.17. Variables Which May be Set by Ports That Use
	 Java
	Variable	Means
	USE_JAVA	Define for the remaining variables
		to have any effect.
	JAVA_VERSION	List of space-separated suitable Java versions
		for the port. An optional "+"
		allows specifying a range of versions (allowed
		values:
		1.5[+] 1.6[+] 1.7[+]).
	JAVA_OS	List of space-separated suitable
		JDK port operating systems for the
		port (allowed values:
		native linux).
	JAVA_VENDOR	List of space-separated suitable
		JDK port vendors for the port
		(allowed values:
		freebsd bsdjava sun
		 openjdk).
	JAVA_BUILD	When set, add the selected JDK
		port to the build dependencies.
	JAVA_RUN	When set, add the selected JDK
		port to the run dependencies.
	JAVA_EXTRACT	When set, add the selected JDK
		port to the extract dependencies.

Below is the list of all settings a port will receive
	after setting USE_JAVA:
表格 6.18. Variables Provided to Ports That Use Java
	Variable	Value
	JAVA_PORT	The name of the JDK port (for
		example, java/openjdk6).
	JAVA_PORT_VERSION	The full version of the JDK
		port (for example, 1.6.0). Only
		the first two digits of this version number are
		needed, use
		${JAVA_PORT_VERSION:C/^([0-9])\.([0-9])(.*)$/\1.\2/}.
	JAVA_PORT_OS	The operating system used by the
		JDK port (for example,
		'native').
	JAVA_PORT_VENDOR	The vendor of the JDK port
		(for example, 'openjdk').
	JAVA_PORT_OS_DESCRIPTION	Description of the operating system used by the
		JDK port (for example,
		'Native').
	JAVA_PORT_VENDOR_DESCRIPTION	Description of the vendor of the
		JDK port (for example,
		'OpenJDK BSD Porting
		 Team').
	JAVA_HOME	Path to the installation directory of the
		JDK (for example,
		'/usr/local/openjdk6').
	JAVAC	Path to the Java compiler to use (for example,
		'/usr/local/openjdk6/bin/javac').
	JAR	Path to the jar tool to use
		(for example,
		'/usr/local/openjdk6/bin/jar'
		or
		'/usr/local/bin/fastjar').
	APPLETVIEWER	Path to the appletviewer
		utility (for example,
		'/usr/local/openjdk6/bin/appletviewer').
	JAVA	Path to the java executable.
		Use this for executing Java programs (for example,
		'/usr/local/openjdk6/bin/java').
	JAVADOC	Path to the javadoc utility
		program.
	JAVAH	Path to the javah
		program.
	JAVAP	Path to the javap
		program.
	JAVA_KEYTOOL	Path to the keytool utility
		program.
	JAVA_N2A	Path to the native2ascii
		tool.
	JAVA_POLICYTOOL	Path to the policytool
		program.
	JAVA_SERIALVER	Path to the serialver
		utility program.
	RMIC	Path to the RMI stub/skeleton generator,
		rmic.
	RMIREGISTRY	Path to the RMI registry program,
		rmiregistry.
	RMID	Path to the RMI daemon program
		rmid.
	JAVA_CLASSES	Path to the archive that contains the
		JDK class files,
		${JAVA_HOME}/jre/lib/rt.jar.

Use the java-debug make
	target to get information for debugging the port. It will
	display the value of many of the previously listed
	variables.
Additionally, these constants are defined so all
	Java ports may be installed in a consistent way:
表格 6.19. Constants Defined for Ports That Use Java
	常數	Value
	JAVASHAREDIR	The base directory for everything related to
		Java. Default:
		${PREFIX}/share/java.
	JAVAJARDIR	The directory where JAR files is
		installed. Default:
		${JAVASHAREDIR}/classes.
	JAVALIBDIR	The directory where JAR files installed by
		other ports are located. Default:
		${LOCALBASE}/share/java/classes.

The related entries are defined in both
	PLIST_SUB (documented in
	節 7.1, “Changing pkg-plist Based on Make
 Variables”) and
	SUB_LIST.
6.14.2. Building with Ant
When the port is to be built using Apache Ant, it has to
	define USE_ANT. Ant is thus considered to
	be the sub-make command. When no
	do-build target is defined by the
	port, a default one will be set that runs Ant according to
	MAKE_ENV, MAKE_ARGS and
	ALL_TARGET. This is similar to the
	USES= gmake mechanism, which is documented
	in 節 6.5, “Building Mechanisms”.
6.14.3. Best Practices
When porting a Java library, the port has to install
	the JAR file(s) in ${JAVAJARDIR}, and
	everything else under
	${JAVASHAREDIR}/${PORTNAME} (except for
	the documentation, see below). To reduce the packing file
	size, reference the JAR file(s) directly in the
	Makefile. Use this statement (where
	myport.jar is
	the name of the JAR file installed as part of the
	port):
PLIST_FILES+=	${JAVAJARDIR}/myport.jar
When porting a Java application, the port usually
	installs everything under a single directory (including its
	JAR dependencies). The use of
	${JAVASHAREDIR}/${PORTNAME} is strongly
	encouraged in this regard. It is up the porter to decide
	whether the port installs the additional JAR
	dependencies under this directory or uses the
	already installed ones (from
	${JAVAJARDIR}).
When porting a Java™ application that requires an
	application server such as
	www/tomcat7 to run the
	service, it is quite common for a vendor to distribute a
	.war. A .war
	is a Web application ARchive and is extracted when
	called by the application. Avoid adding a
	.war
	to pkg-plist.
	It is not considered best practice. An application server
	will expand war archive, but not
	clean it up properly if the port is removed. A more
	desirable way of working with this file is to extract the
	archive, then install the files, and lastly add these files
	to pkg-plist.
TOMCATDIR=	${LOCALBASE}/apache-tomcat-7.0
WEBAPPDIR=	myapplication

post-extract:
	@${MKDIR} ${WRKDIR}/${PORTDIRNAME}
	@${TAR} xf ${WRKDIR}/myapplication.war -C ${WRKDIR}/${PORTDIRNAME}

do-install:
	cd ${WRKDIR} && \
	${INSTALL} -d -o ${WWWOWN} -g ${WWWGRP} ${TOMCATDIR}/webapps/${PORTDIRNAME}
	@cd ${WRKDIR}/${PORTDIRNAME} && ${COPYTREE_SHARE} * ${WEBAPPDIR}/${PORTDIRNAME}
Regardless of the type of port (library or
	application), the additional documentation is installed in the
	same location as
	for any other port. The JavaDoc tool is known to produce a
	different set of files depending on the version of the
	JDK that is used. For ports that do not
	enforce the use of a particular JDK, it is
	therefore a complex task to specify the packing list
	(pkg-plist). This is one reason why
	porters are strongly encouraged to use
	PORTDOCS. Moreover, even if the set of
	files that will be generated by javadoc can
	be predicted, the size of the resulting
	pkg-plist advocates for the use of
	PORTDOCS.
The default value for DATADIR is
	${PREFIX}/share/${PORTNAME}. It is a
	good idea to override DATADIR to
	${JAVASHAREDIR}/${PORTNAME} for Java
	ports. Indeed, DATADIR is automatically
	added to PLIST_SUB (documented in
	節 7.1, “Changing pkg-plist Based on Make
 Variables”) so use
	%%DATADIR%% directly in
	pkg-plist.
As for the choice of building Java ports from source or
	directly installing them from a binary distribution, there
	is no defined policy at the time of writing. However,
	people from the
	FreeBSD Java
	 Project encourage porters to have their ports
	built from source whenever it is a trivial task.
All the features that have been presented in this
	section are implemented in bsd.java.mk.
	If the port needs more sophisticated
	Java support, please first have a look at the bsd.java.mk
	 Subversion log as it
	usually takes some time to document the latest features.
	Then, if the needed support that is lacking would be
	beneficial to many other Java ports, feel free to discuss it
	on the FreeBSD Java Language mailing list.
Although there is a java category for
	PRs, it refers to the JDK porting effort
	from the FreeBSD Java project. Therefore, submit the Java port
	in the ports category as for any other
	port, unless the issue is related to either a
	JDK implementation or
	bsd.java.mk.
Similarly, there is a defined policy regarding the
	CATEGORIES of a Java port, which is
	detailed in 節 5.3, “分類”.
6.15. 網路應用程式, Apache 和 PHP
6.15.1. Apache
表格 6.20. Variables for Ports That Use Apache
	USE_APACHE	The port requires Apache. Possible values:
		yes (gets any version),
		22, 24,
		22-24, 22+,
		etc. The default APACHE version is
		22. More details are available
		in ports/Mk/bsd.apache.mk and
		at wiki.freebsd.org/Apache/.
	APXS	Full path to the apxs
		binary. Can be overridden in the port.
	HTTPD	Full path to the httpd
		binary. Can be overridden in the port.
	APACHE_VERSION	The version of present Apache installation
		(read-only variable). This variable is only
		available after inclusion of
		bsd.port.pre.mk. Possible
		values: 22,
		24.
	APACHEMODDIR	Directory for Apache modules. This variable is
		automatically expanded in
		pkg-plist.
	APACHEINCLUDEDIR	Directory for Apache headers. This variable is
		automatically expanded in
		pkg-plist.
	APACHEETCDIR	Directory for Apache configuration files. This
		variable is automatically expanded in
		pkg-plist.

表格 6.21. Useful Variables for Porting Apache Modules
	MODULENAME	Name of the module. Default value is
		PORTNAME. Example:
		mod_hello
	SHORTMODNAME	Short name of the module. Automatically
		derived from MODULENAME, but can
		be overridden. Example:
		hello
	AP_FAST_BUILD	Use apxs to compile and
		install the module.
	AP_GENPLIST	Also automatically creates a
		pkg-plist.
	AP_INC	Adds a directory to a header search path during
		compilation.
	AP_LIB	Adds a directory to a library search path
		during compilation.
	AP_EXTRAS	Additional flags to pass to
		apxs.

6.15.2. 網路應用程式
Web applications must be installed into
	PREFIX/www/appname.
	This path is available both in
	Makefile and in
	pkg-plist as WWWDIR,
	and the path relative to PREFIX is
	available in Makefile as
	WWWDIR_REL.
The user and group of web server process are available
	as WWWOWN and WWWGRP,
	in case the ownership of some files needs to be changed. The
	default values of both are www. Use
	WWWOWN?= myuser and WWWGRP?=
	 mygroup if the port needs different values. This
	allows the user to override them easily.
Do not depend on Apache unless the web app explicitly
	needs Apache. Respect that users may wish to run a web
	app on different web server than Apache.
6.15.3. PHP
表格 6.22. Variables for Ports That Use PHP
	USE_PHP	The port requires PHP. The value
		yes adds a dependency on PHP.
		The list of required PHP extensions can be specified
		instead. Example:
		pcre xml gettext
	DEFAULT_PHP_VER	Selects which major version of PHP will be
		installed as a dependency when no PHP is installed
		yet. Default is 5. Possible
		values: 4,
		5
	IGNORE_WITH_PHP	The port does not work with PHP of the given
		version. Possible values: 4,
		5
	USE_PHPIZE	The port will be built as a PHP
		extension.
	USE_PHPEXT	The port will be treated as a PHP extension,
		including installation and registration in the
		extension registry.
	USE_PHP_BUILD	Set PHP as a build dependency.
	WANT_PHP_CLI	Want the CLI (command line) version of
		PHP.
	WANT_PHP_CGI	Want the CGI version of PHP.
	WANT_PHP_MOD	Want the Apache module version of PHP.
	WANT_PHP_SCR	Want the CLI or the CGI version of PHP.
	WANT_PHP_WEB	Want the Apache module or the CGI version of
		PHP.

6.15.4. PEAR Modules
Porting PEAR modules is a very simple process.
Add USES=pear to the port's
	Makefile. The framework will install the
	relevant files in the right places and automatically generate
	the plist at install time.
範例 6.8. Example Makefile for PEAR Class
PORTNAME= Date
PORTVERSION=	1.4.3
CATEGORIES=	devel www pear

MAINTAINER=	example@domain.com
COMMENT=	PEAR Date and Time Zone Classes

USES=	pear

.include <bsd.port.mk>

6.15.4.1. Horde Modules
In the same way, porting
	 Horde modules is a simple
	 process.
Add USES=horde to the port's
	 Makefile. The framework will install
	 the relevant files in the right places and automatically
	 generate the plist at install time.
The USE_HORDE_BUILD and
	 USE_HORDE_RUN variables can be used to
	 add buildtime and runtime dependencies on other
	 Horde modules. See
	 Mk/Uses/horde.mk for a complete list of
	 available modules.
範例 6.9. Example Makefile for Horde
	 Module
PORTNAME=	Horde_Core
PORTVERSION=	2.14.0
CATEGORIES=	devel www pear

MAINTAINER=	horde@FreeBSD.org
COMMENT=	Horde Core Framework libraries

OPTIONS_DEFINE=	KOLAB SOCKETS
KOLAB_DESC=	Enable Kolab server support
SOCKETS_DESC=	Depend on sockets PHP extension

USES=	horde
USE_PHP=	session

USE_HORDE_BUILD=	Horde_Role
USE_HORDE_RUN=	Horde_Role Horde_History Horde_Pack \
		Horde_Text_Filter Horde_View

KOLAB_USE=	HORDE_RUN=Horde_Kolab_Server,Horde_Kolab_Session
SOCKETS_USE=	PHP=sockets

.include <bsd.port.mk>

6.16. 使用 Python
The Ports Collection supports parallel installation of
 multiple Python versions. Ports must use a
 correct python interpreter, according to
 the user-settable PYTHON_VERSION.
 Most prominently, this means replacing the path to
 python executable in scripts with the value
 of PYTHON_CMD.
Ports that install files under
 PYTHON_SITELIBDIR must use the
 pyXY- package name prefix, so their package
 name embeds the version of Python they are installed
 into.
PKGNAMEPREFIX=	${PYTHON_PKGNAMEPREFIX}
表格 6.23. Most Useful Variables for Ports That Use Python
	USES=python	The port needs Python. The minimal required
	 version can be specified with values such as
	 2.7+. Version ranges can also be
	 specified by separating two version numbers with a dash:
	 USES=python:3.2-3.3
	USE_PYTHON=distutils	Use Python distutils for configuring, compiling,
	 and installing. This is required when the port comes
	 with setup.py. This overrides
	 the do-build and
	 do-install targets and may
	 also override do-configure
	 if GNU_CONFIGURE is not
	 defined.
	USE_PYTHON=autoplist	Create the packaging list automatically. This also
	 requires USE_PYTHON=distutils to be
	 set.
	USE_PYTHON=concurrent	The port will use an unique prefix, typically
	 PYTHON_PKGNAMEPREFIX for certain
	 directories, such as EXAMPLESDIR and
	 DOCSDIR and also will append a
	 suffix, the python version from
	 PYTHON_VER, to binaries and scripts
	 to be installed. This allows ports to be installed for
	 different Python versions at the same time, which
	 otherwise would install conflicting files.
	PYTHON_PKGNAMEPREFIX	Used as a PKGNAMEPREFIX to
	 distinguish packages for different Python versions.
	 Example: py27-
	PYTHON_SITELIBDIR	Location of the site-packages tree, that contains
	 installation path of Python (usually
	 LOCALBASE).
	 PYTHON_SITELIBDIR can be
	 very useful when installing Python modules.
	PYTHONPREFIX_SITELIBDIR	The PREFIX-clean variant of PYTHON_SITELIBDIR.
	 Always use %%PYTHON_SITELIBDIR%% in
	 pkg-plist when possible. The
	 default value of
	 %%PYTHON_SITELIBDIR%% is
	 lib/python%%PYTHON_VERSION%%/site-packages
	PYTHON_CMD	Python interpreter command line, including
	 version number.
	PYNUMERIC	Dependency line for numeric extension.
	PYNUMPY	Dependency line for the new numeric extension,
	 numpy. (PYNUMERIC is deprecated by upstream
	 vendor).
	PYXML	Dependency line for XML extension (not needed for
	 Python 2.0 and higher as it is also in base
	 distribution).

A complete list of available variables can be found in
 /usr/ports/Mk/Uses/python.mk.
範例 6.10. Makefile for a Simple Python
	Module
PORTNAME=	sample
PORTVERSION=	1.2.3
CATEGORIES=	devel

MAINTAINER=	john@doe.tld
COMMENT=	Python sample module

USES=		python
USE_PYTHON=	autoplist distutils

.include <bsd.port.mk>

Some Python applications claim to have
 DESTDIR support (which would be required
 for staging) but it is broken (Mailman up to 2.1.16, for
 instance). This can be worked around by recompiling the
 scripts. This can be done, for example, in the
 post-build target. Assuming the
 Python scripts are supposed to reside in
 PYTHONPREFIX_SITELIBDIR after installation,
 this solution can be applied:
(cd ${STAGEDIR}${PREFIX} \
 && ${PYTHON_CMD} ${PYTHON_LIBDIR}/compileall.py \
 -d ${PREFIX} -f ${PYTHONPREFIX_SITELIBDIR:S;${PREFIX}/;;})
This recompiles the sources with a path relative to the
 stage directory, and prepends the value of
 PREFIX to the file name recorded in the
 byte-compiled output file by -d.
 -f is required to force recompilation, and
 the :S;${PREFIX}/;; strips prefixes from
 the value of PYTHONPREFIX_SITELIBDIR
 to make it relative to
 PREFIX.
6.17. 使用 Tcl/Tk
The Ports Collection supports parallel installation of
 multiple Tcl/Tk versions. Ports
 should try to support at least the default
 Tcl/Tk version and higher with
 USES=tcl. It is possible to specify the
 desired version of tcl by appending
 :xx, for example,
 USES=tcl:85.
表格 6.24. The Most Useful Read-Only Variables for Ports That Use
	Tcl/Tk
	TCL_VER	 chosen major.minor version of
	 Tcl
	TCLSH	 full path of the Tcl
	 interpreter
	TCL_LIBDIR	 path of the Tcl
	 libraries
	TCL_INCLUDEDIR	 path of the Tcl C
	 header files
	TK_VER	 chosen major.minor version of
	 Tk
	WISH	 full path of the Tk
	 interpreter
	TK_LIBDIR	 path of the Tk
	 libraries
	TK_INCLUDEDIR	 path of the Tk C header
	 files

See the USES=tcl and
 USES=tk of
 章 15, Using USES
 Macros for a full description of those
 variables. A complete list of those variables is available in
 /usr/ports/Mk/Uses/tcl.mk.
6.18. 使用 Emacs
This section is yet to be written.
6.19. 使用 Ruby
表格 6.25. Useful Variables for Ports That Use Ruby
	Variable	描述
	USE_RUBY	The port requires Ruby.
	USE_RUBY_EXTCONF	The port uses extconf.rb to
	 configure.
	USE_RUBY_SETUP	The port uses setup.rb to
	 configure.
	RUBY_SETUP	Set to the alternative name of
	 setup.rb. Common value is
	 install.rb.

This table shows the selected variables available
 to port authors via the ports infrastructure. These variables
 are used to install files into their proper locations.
 Use them in pkg-plist as much as
 possible. Do not redefine these variables in the port.
表格 6.26. Selected Read-Only Variables for Ports That Use
	Ruby
	Variable	描述	Example value
	RUBY_PKGNAMEPREFIX	Used as a PKGNAMEPREFIX to
	 distinguish packages for different Ruby
	 versions.	ruby19-
	RUBY_VERSION	Full version of Ruby in the form of
	 x.y.z[.p].	1.9.3.484
	RUBY_SITELIBDIR	Architecture independent libraries installation
	 path.	/usr/local/lib/ruby/site_ruby/1.9
	RUBY_SITEARCHLIBDIR	Architecture dependent libraries installation
	 path.	/usr/local/lib/ruby/site_ruby/1.9/amd64-freebsd10
	RUBY_MODDOCDIR	Module documentation installation path.	/usr/local/share/doc/ruby19/patsy
	RUBY_MODEXAMPLESDIR	Module examples installation path.	/usr/local/share/examples/ruby19/patsy

A complete list of available variables can be found in
 /usr/ports/Mk/bsd.ruby.mk.
6.20. 使用 SDL
USE_SDL is used to
 autoconfigure the dependencies for ports which use an SDL
 based library like devel/sdl12
 and graphics/sdl_image.
These SDL libraries for version 1.2 are recognized:
	sdl: devel/sdl12

	console: devel/sdl_console

	gfx: graphics/sdl_gfx

	image: graphics/sdl_image

	mixer: audio/sdl_mixer

	mm: devel/sdlmm

	net: net/sdl_net

	pango: x11-toolkits/sdl_pango

	sound: audio/sdl_sound

	ttf: graphics/sdl_ttf

These SDL libraries for version 2.0 are recognized:
	sdl: devel/sdl20

	gfx: graphics/sdl2_gfx

	image: graphics/sdl2_image

	mixer: audio/sdl2_mixer

	net: net/sdl2_net

	ttf: graphics/sdl2_ttf

Therefore, if a port has a dependency on
 net/sdl_net and
 audio/sdl_mixer,
 the syntax will be:
USE_SDL=	net mixer
The dependency
 devel/sdl12, which is
 required by net/sdl_net
 and audio/sdl_mixer, is
 automatically added as well.
Using USE_SDL with entries for
 SDL 1.2, it will automatically:
	Add a dependency on
	 sdl12-config to
	 BUILD_DEPENDS

	Add the variable SDL_CONFIG to
	 CONFIGURE_ENV

	Add the dependencies of the selected libraries to
	 LIB_DEPENDS

Using USE_SDL with entries for
 SDL 2.0, it will automatically:
	Add a dependency on
	 sdl2-config to
	 BUILD_DEPENDS

	Add the variable SDL2_CONFIG to
	 CONFIGURE_ENV

	Add the dependencies of the selected libraries to
	 LIB_DEPENDS

6.21. 使用 wxWidgets
This section describes the status of the
 wxWidgets libraries in the ports
 tree and its integration with the ports system.
6.21.1. 楔子
There are many versions of the
	wxWidgets libraries which
	conflict between them (install files under the same name).
	In the ports tree this problem has been solved by installing
	each version under a different name using version number
	suffixes.
The obvious disadvantage of this is that each
	application has to be modified to find the expected version.
	Fortunately, most of the applications call the
	wx-config script to determine the
	necessary compiler and linker flags. The script is named
	differently for every available version. Majority of
	applications respect an environment variable, or accept a
	configure argument, to specify which
	wx-config script to call. Otherwise they
	have to be patched.
6.21.2. Version Selection
To make the port use a specific version of
	wxWidgets there are two variables
	available for defining (if only one is defined the other
	will be set to a default value):
表格 6.27. Variables to Select
	 wxWidgets Versions
	Variable	描述	Default value
	USE_WX	List of versions the port can use	All available versions
	USE_WX_NOT	List of versions the port cannot use	None

The available
	wxWidgets versions and the
	corresponding ports in the tree are:
表格 6.28. Available wxWidgets
	 Versions
	版本	Port
	2.4	x11-toolkits/wxgtk24
	2.6	x11-toolkits/wxgtk26
	2.8	x11-toolkits/wxgtk28

注意:
The versions starting from 2.5 also
	 come in Unicode version and are installed by a slave port
	 named like the normal one plus a
	 -unicode suffix, but this can be
	 handled with variables (see
	 節 6.21.4, “Unicode”).

The variables in 表格 6.27, “Variables to Select
	 wxWidgets Versions” can
	be set to one or more of these combinations
	separated by spaces:
表格 6.29. wxWidgets Version
	 Specifications
	描述	範例
	單一版本	2.4
	Ascending range	2.4+
	Descending range	2.6-
	Full range (must be ascending)	2.4-2.6

There are also some variables to select the preferred
	versions from the available ones. They can be set to a list
	of versions, the first ones will have higher
	priority.
表格 6.30. Variables to Select Preferred
	 wxWidgets Versions
	名字	Designed for
	WANT_WX_VER	the port
	WITH_WX_VER	the user

6.21.3. Component Selection
There are other applications that, while not being
	wxWidgets libraries, are related
	to them. These applications can be specified in
	WX_COMPS. These
	components are available:
表格 6.31. Available wxWidgets
	 Components
	名字	描述	Version restriction
	wx	main library	none
	contrib	contributed libraries	none
	python	wxPython
		(Python bindings)	2.4-2.6
	mozilla	wxMozilla	2.4
	svg	wxSVG	2.6

The dependency type can be selected for each component
	by adding a suffix separated by a semicolon. If not present
	then a default type will be used (see
	表格 6.33, “Default wxWidgets
	 Dependency Types”). These types
	are available:
表格 6.32. Available wxWidgets
	 Dependency Types
	名字	描述
	build	Component is required for building, equivalent
		to BUILD_DEPENDS
	run	Component is required for running, equivalent
		to RUN_DEPENDS
	lib	Component is required for building and running,
		equivalent to LIB_DEPENDS

The default values for the components are detailed in
	this table:
表格 6.33. Default wxWidgets
	 Dependency Types
	元件	Dependency type
	wx	lib
	contrib	lib
	python	run
	mozilla	lib
	svg	lib

範例 6.11. Selecting wxWidgets
	 Components
This fragment corresponds to a port which
	 uses wxWidgets version
	 2.4 and its contributed
	 libraries.
USE_WX=		2.4
WX_COMPS=	wx contrib

6.21.4. Unicode
The wxWidgets library
	supports Unicode since version 2.5. In
	the ports tree both versions are available and can be
	selected with these variables:
表格 6.34. Variables to Select Unicode in
	 wxWidgets
	 Versions
	Variable	描述	Designed for
	WX_UNICODE	The port works only with
		the Unicode version	the port
	WANT_UNICODE	The port works with both versions but prefers
		the Unicode one	the port
	WITH_UNICODE	The port will use the Unicode version	the user
	WITHOUT_UNICODE	The port will use the normal version if
		supported (when WX_UNICODE is not
		defined)	the user

警告:
Do not use WX_UNICODE for ports
	 that can use both Unicode and normal versions. If
	 the port needs to use Unicode by default, define
	 WANT_UNICODE instead.

6.21.5. Detecting Installed Versions
To detect an installed version, define
	WANT_WX. If it is not set to a
	specific version then the components will have a version
	suffix. HAVE_WX will be
	filled after detection.
範例 6.12. Detecting Installed
	 wxWidgets Versions and
	 Components
This fragment can be used in a port that uses
	 wxWidgets if it is installed,
	 or an option is selected.
WANT_WX=	yes

.include <bsd.port.pre.mk>

.if defined(WITH_WX) || !empty(PORT_OPTIONS:MWX) || !empty(HAVE_WX:Mwx-2.4)
USE_WX=			2.4
CONFIGURE_ARGS+=	--enable-wx
.endif
This fragment can be used in a port that
	 enables wxPython support if it
	 is installed or if an option is selected, in addition to
	 wxWidgets, both version
	 2.6.
USE_WX=		2.6
WX_COMPS=	wx
WANT_WX=	2.6

.include <bsd.port.pre.mk>

.if defined(WITH_WXPYTHON) || !empty(PORT_OPTIONS:MWXPYTHON) || !empty(HAVE_WX:Mpython)
WX_COMPS+=		python
CONFIGURE_ARGS+=	--enable-wxpython
.endif

6.21.6. Defined Variables
These variables are available in the port (after
	defining one from
	表格 6.27, “Variables to Select
	 wxWidgets Versions”).
表格 6.35. Variables Defined for Ports That Use
	 wxWidgets
	名字	描述
	WX_CONFIG	The path to the
		wxWidgets
		wx-config script (with different
		name)
	WXRC_CMD	The path to the
		wxWidgets
		wxrc program (with different
		name)
	WX_VERSION	The wxWidgets
		version that is going to be used (for example,
		2.6)
	WX_UNICODE	If not defined but Unicode is going to be used
		then it will be defined

6.21.7. Processing in
	bsd.port.pre.mk
Define WX_PREMK to be able to use the
	variables right after including
	bsd.port.pre.mk.
重要:
When defining WX_PREMK, then the
	 version, dependencies, components and defined variables
	 will not change if modifying the
	 wxWidgets port variables
	 after including
	 bsd.port.pre.mk.

範例 6.13. Using wxWidgets Variables
	 in Commands
This fragment illustrates the use of
	 WX_PREMK by running the
	 wx-config script to obtain the full
	 version string, assign it to a variable and pass it to the
	 program.
USE_WX=		2.4
WX_PREMK=	yes

.include <bsd.port.pre.mk>

.if exists(${WX_CONFIG})
VER_STR!=	${WX_CONFIG} --release

PLIST_SUB+=	VERSION="${VER_STR}"
.endif

注意:
The wxWidgets variables can
	 be safely used in commands when they are inside targets
	 without the need of WX_PREMK.

6.21.8. Additional configure
	Arguments
Some GNU configure scripts cannot
	find wxWidgets with just the
	WX_CONFIG environment variable set,
	requiring additional arguments.
	WX_CONF_ARGS can be used for
	provide them.
表格 6.36. Legal Values for
	 WX_CONF_ARGS
	Possible value	Resulting argument
	absolute	--with-wx-config=${WX_CONFIG}
	relative	--with-wx=${LOCALBASE} --with-wx-config=${WX_CONFIG:T}

6.22. 使用 Lua
This section describes the status of the
 Lua libraries in the ports tree and
 its integration with the ports system.
6.22.1. 楔子
There are many versions of the
	Lua libraries and corresponding
	interpreters, which conflict between them (install files
	under the same name). In the ports tree this problem has
	been solved by installing each version under a different
	name using version number suffixes.
The obvious disadvantage of this is that each
	application has to be modified to find the expected version.
	But it can be solved by adding some additional flags to the
	compiler and linker.
6.22.2. Version Selection
A port using Lua only needs to
	have this line:
USES=	lua
If a specific version of Lua is needed, instructions on
	how to select it are given in the USES=lua part
	of 章 15, Using USES
 Macros.
6.22.3. Defined Variables
These variables are available in the port.
表格 6.37. Variables Defined for Ports That Use
	 Lua
	名字	描述
	LUA_VER	The Lua version that
		is going to be used (for example,
		5.1)
	LUA_VER_STR	The Lua version
		without the dots (for example,
		51)
	LUA_PREFIX	The prefix where Lua
		(and components) is installed
	LUA_SUBDIR	The directory under
		${PREFIX}/bin,
		${PREFIX}/share and
		${PREFIX}/lib where
		Lua is installed
	LUA_INCDIR	The directory where
		Lua and
		tolua header files are
		installed
	LUA_LIBDIR	The directory where
		Lua and
		tolua libraries are
		installed
	LUA_MODLIBDIR	The directory where
		Lua module libraries
		(.so) are installed
	LUA_MODSHAREDIR	The directory where
		Lua modules
		(.lua) are installed
	LUA_PKGNAMEPREFIX	The package name prefix used by
		Lua modules
	LUA_CMD	The path to the Lua
		interpreter
	LUAC_CMD	The path to the Lua
		compiler

6.23. 使用 iconv
After 2013-10-08 (254273),
 FreeBSD 10-CURRENT and newer versions have a native
 iconv in the operating system. On earlier
 versions, converters/libiconv
 was used as a dependency.
For software that needs iconv, define
 USES=iconv. FreeBSD versions before
 10-CURRENT on 2013-08-13 (254273) do
 not have a native iconv. On these earlier
 versions, a dependency on
 converters/libiconv will be
 added automatically.
When a port defines USES=iconv, these
 variables will be available:
	Variable name	Purpose	Value before FreeBSD 10-CURRENT
	 254273 (2013-08-13)	Value after FreeBSD 10-CURRENT
	 254273 (2013-08-13)
	ICONV_CMD	Directory where the iconv
	 binary resides	${LOCALBASE}/bin/iconv	/usr/bin/iconv
	ICONV_LIB	ld argument to link to
	 libiconv (if needed)	-liconv	(空)
	ICONV_PREFIX	Directory where the iconv
	 implementation resides (useful for configure
	 scripts)	${LOCALBASE}	/usr
	ICONV_CONFIGURE_ARG	Preconstructed configure argument for
	 configure scripts	--with-libiconv-prefix=${LOCALBASE}	(空)
	ICONV_CONFIGURE_BASE	Preconstructed configure argument for
	 configure scripts	--with-libiconv=${LOCALBASE}	(空)

These two examples automatically populate the variables
 with the correct value for systems using
 converters/libiconv or the
 native iconv respectively:
範例 6.14. Simple iconv Usage
USES=		iconv
LDFLAGS+=	-L${LOCALBASE}/lib ${ICONV_LIB}

範例 6.15. iconv Usage with
	configure
USES=		iconv
CONFIGURE_ARGS+=${ICONV_CONFIGURE_ARG}

As shown above, ICONV_LIB is empty when
 a native iconv is present. This can be
 used to detect the native iconv and respond
 appropriately.
Sometimes a program has an ld argument
 or search path hardcoded in a Makefile or
 configure script. This approach can be used to solve that
 problem:
範例 6.16. Fixing Hardcoded -liconv
USES=		iconv

post-patch:
	@${REINPLACE_CMD} -e 's/-liconv/${ICONV_LIB}/' ${WRKSRC}/Makefile

In some cases it is necessary to set alternate values or
 perform operations depending on whether there is a native
 iconv.
 bsd.port.pre.mk must be included before
 testing the value of ICONV_LIB:
範例 6.17. Checking for Native iconv
	Availability
USES=		iconv

.include <bsd.port.pre.mk>

post-patch:
.if empty(ICONV_LIB)
	# native iconv detected
	@${REINPLACE_CMD} -e 's|iconv||' ${WRKSRC}/Config.sh
.endif

.include <bsd.port.post.mk>

6.24. 使用 Xfce
Ports that need Xfce libraries or
 applications set USES=xfce.
Specific Xfce library and
 application dependencies are set with values assigned to
 USE_XFCE. They are defined in
 /usr/ports/Mk/Uses/xfce.mk. The possible
 values are:
USE_XFCE 的值
	garcon
	sysutils/garcon

	libexo
	x11/libexo

	libgui
	x11-toolkits/libxfce4gui

	libmenu
	x11/libxfce4menu

	libutil
	x11/libxfce4util

	panel
	x11-wm/xfce4-panel

	thunar
	x11-fm/thunar

	xfconf
	x11/xfce4-conf

範例 6.18. USES=xfce 範例
USES=		xfce
USE_XFCE=	libmenu

範例 6.19. Using Xfce's Own GTK3 Widgets
In this example, the ported application uses the
	GTK3-specific widgets x11/libxfce4menu and x11/xfce4-conf.
USES=		xfce:gtk3
USE_XFCE=	libmenu xfconf

提示:
Xfce components included this
	way will automatically include any dependencies they need. It
	is no longer necessary to specify the entire list. If the
	port only needs x11-wm/xfce4-panel, use:
USES=		xfce
USE_XFCE=	panel
There is no need to list the components x11-wm/xfce4-panel needs itself like
	this:
USES=		xfce
USE_XFCE=	libexo libmenu libutil panel
However, Xfce components and
	non-Xfce dependencies of the port
	must be included explicitly. Do not count on an
	Xfce component to provide a
	sub-dependency other than itself for the main port.

6.25. 使用 Mozilla
表格 6.38. Variables for Ports That Use Mozilla
	USE_GECKO	Gecko backend the port can handle. Possible
	 values: libxul
	 (libxul.so),
	 seamonkey
	 (libgtkembedmoz.so, deprecated,
	 must not be used any more).
	USE_FIREFOX	The port requires Firefox as a runtime
	 dependency. Possible values: yes
	 (get default version), 40,
	 36, 35. Default
	 dependency is on version
	 40.
	USE_FIREFOX_BUILD	The port requires Firefox as a buildtime
	 dependency. Possible values: see USE_FIREFOX. This
	 automatically sets USE_FIREFOX and assigns the same
	 value.
	USE_SEAMONKEY	The port requires SeaMonkey as a runtime
	 dependency. Possible values: yes
	 (get default version), 20,
	 11 (deprecated, must not be used
	 any more). Default dependency is on version
	 20.
	USE_SEAMONKEY_BUILD	The port requires SeaMonkey as a buildtime
	 dependency. Possible values: see USE_SEAMONKEY. This
	 automatically sets USE_SEAMONKEY and assigns the same
	 value.
	USE_THUNDERBIRD	The port requires Thunderbird as a runtime
	 dependency. Possible values: yes
	 (get default version), 31,
	 30 (deprecated, must not be used
	 any more). Default dependency is on version
	 31.
	USE_THUNDERBIRD_BUILD	The port requires Thunderbird as a buildtime
	 dependency. Possible values: see USE_THUNDERBIRD.
	 This automatically sets USE_THUNDERBIRD and assigns
	 the same value.

A complete list of available variables can be found in
 /usr/ports/Mk/bsd.gecko.mk.
6.26. 使用 Databases
表格 6.39. Variables for Ports Using Databases
	Variable	Means
	USE_BDB	If variable is set to yes,
	 add dependency on
	 databases/db5
	 port. The variable may also be set to values: 48, 5
	 or 6. It is possible to declare a range of acceptable
	 values, USE_BDB=48+ will find the
	 highest installed version, and fall back to 4.8 if
	 nothing else is installed.
	 WANT_BDB_VER will always build this
	 port with a specific version of the Berkely DB.
	 INVALID_BDB_VER can be used to
	 specify a version that cannot be used.
	USE_MYSQL	If the variable is set to yes,
	 add a dependency on the databases/mysql56-client port.
	 An associated variable,
	 WANT_MYSQL_VER, may be set to
	 values such as 51, 55, or 60. Additionally to
	 specify use of Percona, use 56p, or for MariaDB, use
	 53m, 55m or 100m.
	USE_PGSQL	Retired in favor of USES=pgsql.
	USE_SQLITE	If set to yes, add
	 dependency on
	 databases/sqlite3
	 port. The variable may also be set to 3 or 2, to add
	 a dependency on 3.x or 2.x, respectively.

More details are available in bsd.database.mk.
6.27. Starting and Stopping Services (rc
 Scripts)
rc.d scripts are used to start
 services on system startup, and to give administrators a
 standard way of stopping, starting and restarting the service.
 Ports integrate into the system rc.d
 framework. Details on its usage can be found in the
	rc.d Handbook chapter. Detailed explanation of
 the available commands is provided in rc(8) and
 rc.subr(8). Finally, there is
 an
	article on practical aspects of
 rc.d scripting.
With a mythical port called
 doorman, which needs to start a
 doormand daemon. Add the following
 to the Makefile:
USE_RC_SUBR=	doormand
Multiple scripts may be listed and will be installed.
 Scripts must be placed in the files
 subdirectory and a .in suffix must be added
 to their filename. Standard SUB_LIST
 expansions will be ran against this file. Use of the
 %%PREFIX%% and
 %%LOCALBASE%% expansions is strongly
 encouraged as well. More on SUB_LIST in
 the relevant
	section.
As of FreeBSD 6.1-RELEASE, local
 rc.d scripts (including those installed
 by ports) are included in the overall rcorder(8) of the
 base system.
An example simple rc.d script to start
 the doormand daemon:
#!/bin/sh

$FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $
#
PROVIDE: doormand
REQUIRE: LOGIN
KEYWORD: shutdown
#
Add these lines to /etc/rc.conf.local or /etc/rc.conf
to enable this service:
#
# doormand_enable (bool):	Set to NO by default.
#				Set it to YES to enable doormand.
# doormand_config (path):	Set to %%PREFIX%%/etc/doormand/doormand.cf
#				by default.

. /etc/rc.subr

name=doormand
rcvar=doormand_enable

load_rc_config $name

: ${doormand_enable:="NO"}
: ${doormand_config="%%PREFIX%%/etc/doormand/doormand.cf"}

command=%%PREFIX%%/sbin/${name}
pidfile=/var/run/${name}.pid

command_args="-p $pidfile -f $doormand_config"

run_rc_command "$1"
Unless there is a very good reason to start the service
 earlier, or it runs as a particular user (other than root), all
 ports scripts must use:
REQUIRE: LOGIN
If the startup script launches a daemon that must be
 shutdown, the following will trigger a stop of the service on
 system shutdown:
KEYWORD: shutdown
If the script is not starting a persistent service this is
 not necessary.
For optional configuration elements the "="
 style of default variable assignment is preferable to the
 ":=" style here, since the former sets a default
 value only if the variable is unset, and the latter sets one
 if the variable is unset or null. A user
 might very well include something like:
doormand_flags=""
in their rc.conf.local, and a
 variable substitution using ":=" would
 inappropriately override the user's intention. The
 _enable variable is not optional,
 and must use the ":" for the default.
6.27.1. Pre-Commit Checklist
Before contributing a port with an
	rc.d script, and more importantly,
	before committing one, please consult this
	checklist to be sure that it is ready.
The devel/rclint
	port can check for most of these, but it is not a
	substitute for proper review.
	If this is a new file, does it have a
	 .sh extension? If so, that must be
	 changed to just
	 file.in
	 since rc.d files may not end with
	 that extension.

	Does the file have a
	 $FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $ tag?

	Do the name of the file (minus
	 .in), the
	 PROVIDE line, and
	 $name
	 all match? The file name matching
	 PROVIDE makes debugging easier,
	 especially for rcorder(8) issues. Matching the
	 file name and
	 $name
	 makes it easier to figure out which variables are
	 relevant in rc.conf[.local]. It is
	 also a policy
	 for all new scripts, including those in the base
	 system.

	Is the REQUIRE line set to
	 LOGIN? This is mandatory for scripts
	 that run as a non-root user. If it runs as root, is
	 there a good reason for it to run prior to
	 LOGIN? If not, it must run after
	 so that local scrips can be loosely grouped to a point in
	 rcorder(8) after most everything in the base is
	 already running.

	Does the script start a persistent service? If so,
	 it must have KEYWORD:
	 shutdown.

	Make sure there is no
	 KEYWORD: FreeBSD present. This has
	 not been necessary nor desirable for years. It is also
	 an indication that the new script was copy/pasted from
	 an old script, so extra caution must be given to the
	 review.

	If the script uses an interpreted language like
	 perl, python, or
	 ruby, make certain that
	 command_interpreter is set
	 appropriately, for example, for
	 Perl, by adding
	 PERL=${PERL} to
	 SUB_LIST and using
	 %%PERL%%. Otherwise,
service name stop
will probably not work properly. See
	 service(8) for more information.

	Have all occurrences of
	 /usr/local been replaced with
	 %%PREFIX%%?

	Do the default variable assignments come after
	 load_rc_config?

	Are there default assignments to empty strings?
	 They should be removed, but double-check that the option
	 is documented in the comments at the top of the
	 file.

	Are things that are set in variables actually used
	 in the script?

	Are options listed in the default
	 name_flags
	 things that are actually mandatory? If so, they must
	 be in command_args. The
	 -d option is a red flag (pardon the
	 pun) here, since it is usually the option to
	 “daemonize” the process, and therefore is
	 actually mandatory.

	name_flags
	 must never be included in
	 command_args (and vice versa,
	 although that error is less common).

	Does the script execute any code unconditionally?
	 This is frowned on. Usually these things must be
	 dealt with through a
	 start_precmd.

	All boolean tests must use the
	 checkyesno function. No
	 hand-rolled tests for [Yy][Ee][Ss],
	 etc.

	If there is a loop (for example, waiting for
	 something to start) does it have a counter to terminate
	 the loop? We do not want the boot to be stuck forever
	 if there is an error.

	Does the script create files or directories that
	 need specific permissions, for example, a
	 pid that needs to be owned by
	 the user that runs the process? Rather than the
	 traditional touch(1)/chown(8)/chmod(1)
	 routine, consider using install(1) with the proper
	 command line arguments to do the whole procedure with
	 one step.

6.28. Adding Users and Groups
Some ports require a particular user account to be present,
 usually for daemons that run as that user. For these ports,
 choose a unique UID from 50 to 999 and
 register it in ports/UIDs (for users) and
 ports/GIDs (for groups). The unique
 identification should be the same for users and groups.
Please include a patch against these two files when
 requiring a new user or group to be created for the
 port.
Then use USERS and
 GROUPS in
 Makefile, and the user will be
 automatically created when installing the port.
USERS=	pulse
GROUPS=	pulse pulse-access pulse-rt
The current list of reserved UIDs and GIDs can be found
 in ports/UIDs and
 ports/GIDs.
6.29. Ports That Rely on Kernel Sources
Some ports (such as kernel loadable modules) need the
 kernel source files so that the port can compile. Here is the
 correct way to determine if the user has them
 installed:
USES=	kmod
Apart from this check, the kmod feature
 takes care of most items that these ports need to take into
 account.
章 7. Advanced pkg-plist Practices
7.1. Changing pkg-plist Based on Make
 Variables
Some ports, particularly the p5- ports,
 need to change their pkg-plist depending on
 what options they are configured with (or version of
 perl, in the case of p5-
 ports). To make this easy, any instances in
 pkg-plist of %%OSREL%%,
 %%PERL_VER%%, and
 %%PERL_VERSION%% will be substituted
 appropriately. The value of %%OSREL%% is the
 numeric revision of the operating system (for example,
 4.9). %%PERL_VERSION%%
 and %%PERL_VER%% is the full version number
 of perl (for example,
 5.8.9). Several other
 %%VARS%% related
 to port's documentation files are described in the relevant
	section.
To make other substitutions, set
 PLIST_SUB with a list of
 VAR=VALUE
 pairs and instances of
 %%VAR%% will be
 substituted with VALUE in
 pkg-plist.
For instance, if a port installs many files
 in a version-specific subdirectory, use a placeholder for the
 version so that pkg-plist does not have to
 be regenerated every time the port is updated. For
 example:
OCTAVE_VERSION=	${PORTREVISION}
PLIST_SUB=	OCTAVE_VERSION=${OCTAVE_VERSION}
in the Makefile and use
 %%OCTAVE_VERSION%% wherever the version shows
 up in pkg-plist. When
 the port is upgraded, it will not be necessary to edit dozens
 (or in some cases, hundreds) of lines in
 pkg-plist.
If files are installed conditionally on the options
 set in the port, the usual way of handling it is prefixing
 pkg-plist lines with a
 %%OPT%% for lines needed when the option is
 enabled, or %%NO_OPT%% when the option is
 disabled, and adding OPTIONS_SUB=yes to the
 Makefile. See 節 5.12.3.1, “OPTIONS_SUB” for more information.
For instance, if there are files that are only installed
 when the X11 option is enabled, and
 Makefile has:
OPTIONS_DEFINE=	X11
OPTIONS_SUB=	yes
In pkg-plist, put
 %%X11%% in front of the lines only being
 installed when the option is enabled, like this :
%%X11%%bin/foo-gui
This substitution will be done between the
 pre-install and
 do-install targets, by reading from
 PLIST and writing to
 TMPPLIST (default:
 WRKDIR/.PLIST.mktmp). So if the port
 builds PLIST on the fly, do so in or before
 pre-install. Also, if the port
 needs to edit the resulting file, do so in
 post-install to a file named
 TMPPLIST.
Another way of modifying a port's packing list is based on
 setting the variables PLIST_FILES and
 PLIST_DIRS. The value of each variable is
 regarded as a list of pathnames to write to
 TMPPLIST along with
 PLIST contents. While names listed in
 PLIST_FILES and
 PLIST_DIRS are subject to
 %%VAR%%
 substitution as described above, it is better to use the
 ${VAR} directly.
 Except for that, names from
 PLIST_FILES will appear in the final packing
 list unchanged, while @dir
 will be prepended to names from
 PLIST_DIRS. To take effect,
 PLIST_FILES and
 PLIST_DIRS must be set before
 TMPPLIST is written, that is, in
 pre-install or earlier.
From time to time, using OPTIONS_SUB
 is not enough. In those cases, adding a specific
 TAG to
 PLIST_SUB
 inside the Makefile with a special
 value of @comment, makes package tools to
 ignore the line. For instance, if some files are only installed
 when the X11 option is on and the
 architecture is i386:
.include <bsd.port.pre.mk>

.if ${PORT_OPTIONS:MX11} && ${ARCH} == "i386"
PLIST_SUB+=	X11I386=""
.else
PLIST_SUB+=	X11I386="@comment "
.endif
7.2. Empty Directories
7.2.1. Cleaning Up Empty Directories
When being de-installed, a port has to remove empty
	directories it created. Most of these directories are removed
	automatically by pkg(8), but for directories created
	outside of ${PREFIX}, or empty
	directories, some more work needs to be done. This is usually
	accomplished by adding @dir lines for those
	directories. Subdirectories must be deleted before deleting
	parent directories.
[...]
@dir /var/games/oneko/saved-games
@dir /var/games/oneko
7.2.2. Creating Empty Directories
Empty directories created during port installation need
	special attention. They must be present when the package
	is created. If they are not created by the port code, create
	them in the Makefile:
post-stage:
	@${MKDIR} ${STAGEDIR}${PREFIX}/some/directory
Add the directory to pkg-plist
	like any other. For example:
@dir some/directory
7.3. Configuration Files
If the port installs configuration files to
 PREFIX/etc (or elsewhere) do
 not list them in
 pkg-plist. That will cause
 pkg delete to remove files that have been
 carefully edited by the user, and a re-installation will wipe
 them out.
Instead, install sample files with a
 filename.sample
 extension. The @sample macro automates this,
 see 節 7.6.9, “@sample
	file
	[file]” for what it does
 exactly. For each sample file, add a line to
 pkg-plist:
@sample etc/orbit.conf.sample
If there is a very good reason not to install a working
 configuration file by default, only list the sample filename in
 pkg-plist, without the
 @sample followed by a space part, and add a
 message pointing out that the
 user must copy and edit the file before the software will
 work.
提示:
When a port installs its configuration in a subdirectory
	of ${PREFIX}/etc, use
	ETCDIR, which defaults to
	${PREFIX}/etc/${PORTNAME}, it can be
	overridden in the ports Makefile if there
	is a convention for the port to use some other directory. The
	%%ETCDIR%% macro will be used in its
	stead in pkg-plist.

注意:
The sample configuration files should always have the
	.sample suffix. If for some historical
	reason using the standard suffix is not possible, or if the
	sample files come from some other directory, use
	this construct:
@sample etc/orbit.conf-dist etc/orbit.conf
or
@sample %%EXAMPLESDIR%%/orbit.conf etc/orbit.conf
The format is @sample
	 sample-file
	 actual-config-file.

7.4. Dynamic Versus Static Package List
A static package list is a package
 list which is available in the Ports Collection either as
 pkg-plist (with or without variable
 substitution), or embedded into the
 Makefile via
 PLIST_FILES and
 PLIST_DIRS. Even if the contents are
 auto-generated by a tool or a target in the Makefile
 before the inclusion into the Ports
 Collection by a committer (for example, using make
	makeplist>), this is still considered a static list,
 since it is possible to examine it without having to download or
 compile the distfile.
A dynamic package list is a package
 list which is generated at the time the port is compiled based
 upon the files and directories which are installed. It is not
 possible to examine it before the source code of the ported
 application is downloaded and compiled, or after running a
 make clean.
While the use of dynamic package lists is not forbidden,
 maintainers should use static package lists wherever possible,
 as it enables users to grep(1) through available ports to
 discover, for example, which port installs a certain file.
 Dynamic lists should be primarily used for complex ports where
 the package list changes drastically based upon optional
 features of the port (and thus maintaining a static package list
 is infeasible), or ports which change the package list based
 upon the version of dependent software used. For example, ports
 which generate docs with
 Javadoc.
7.5. Automated Package List Creation
First, make sure the port is almost complete, with only
 pkg-plist missing. Running make
	makeplist will show an example for
 pkg-plist. The output of
 makeplist must be double checked for
 correctness as it tries to automatically guess a few things, and
 can get it wrong.
User configuration files should be installed as
 filename.sample,
 as it is described in 節 7.3, “Configuration Files”.
 info/dir must not be listed and
 appropriate install-info lines must be
 added as noted in the info
	files section. Any libraries installed by the port
 must be listed as specified in the shared libraries
 section.
7.6. Expanding Package List with Keywords
All keywords can also take optional arguments in
 parentheses. The arguments are owner, group, and mode. This
 argument is used on the file or directory referenced.
 To change the owner, group, and mode of a configuration file,
 use:
@sample(games,games,640) etc/config.sample
The arguments are optional. If only the group and mode
 need to be changed, use:
@sample(,games,660) etc/config.sample
7.6.1. @desktop-file-utils
Will run update-desktop-database -q
	after installation and deinstallation.
7.6.2. @fc
	directory
Add a @dir entry for the directory
	passed as an argument, and run fc-cache -fs
	on that directory after installation and
	deinstallation.
7.6.3. @fcfontsdir
	directory
Add a @dir entry for the
	directory passed as an argument, and run fc-cache
	 -fs, mkfontscale and
	mkfontdir on that directory after
	installation and deinstallation. Additionally, on
	deinstallation, it removes the
	fonts.scale and
	fonts.dir cache files if they are
	empty. This keyword is equivalent to adding both @fc
	 directory and @fontsdir
	 directory.
7.6.4. @fontsdir
	directory
Add a @dir entry for the
	directory passed as an argument, and run
	mkfontscale and
	mkfontdir on that directory after
	installation and deinstallation. Additionally, on
	deinstallation, it removes the
	fonts.scale and
	fonts.dir cache files if they are
	empty.
7.6.5. @glib-schemas
Runs glib-compile-schemas on
	installation and deinstallation.
7.6.6. @info
	file
Add the file passed as argument to the plist, and updates
	the info document index on installation and deinstallation.
	Additionally, it removes the index if empty on
	deinstallation. This should never be used manually, but
	always through INFO. See 節 5.11, “Info Files” for more information.
7.6.7. @kld
	directory
Runs kldxref on the directory
	on installation and deinstallation. Additionally, on
	deinstallation, it will remove the directory if empty.
7.6.8. @rmtry
	file
Will remove the file on deinstallation, and not give an
	error if the file is not there.
7.6.9. @sample
	file
	[file]
This is used to handle installation of configuration
	files, through example files bundled with the package. The
	“actual”, non-sample, file is either the second
	filename, if present, or the first filename without the
	.sample extension.
This does three things. First, add the first file passed
	as argument, the sample file, to the plist. Then, on
	installation, if the actual file is not found, copy the sample
	file to the actual file. And finally, on deinstallation,
	remove the actual file if it has not been modified. See 節 7.3, “Configuration Files” for more information.
7.6.10. @shared-mime-info
	directory
Runs update-mime-database on the
	directory on installation and deinstallation.
7.6.11. @shell
	file
Add the file passed as argument to the plist.
On installation, add the full path to
	file to
	/etc/shells, while making sure it is not
	added twice. On deinstallation, remove it from
	/etc/shells.
7.6.12. @terminfo
Do not use by itself. If the port installs
	*.terminfo
	files, add USES=terminfo
	to its Makefile.
On installation and deinstallation, if
	tic is present, refresh
	${PREFIX}/share/misc/terminfo.db from the
	*.terminfo
	files in ${PREFIX}/share/misc.
7.6.13. Base Keywords
There are a few keywords that are hardcoded, and
	documented in pkg-create(8). For the sake of
	completeness, they are also documented here.
7.6.13.1. @
	 [file]
The empty keyword is a placeholder to use when the
	 file's owner, group, or mode need to be changed. For
	 example, to set the group of the file to
	 games and add the setgid bit, add:
@(,games,2755) sbin/daemon
7.6.13.2. @preexec
	 command,
	 @postexec
	 command,
	 @preunexec
	 command,
	 @postunexec
	 command
Execute command as part of
	 the package installation or deinstallation process.
	@preexec
	 command
	Execute command as part
		of the pre-install
		scripts.

	@postexec
	 command
	Execute command as part
		of the post-install
		scripts.

	@preunexec
	 command
	Execute command as part
		of the pre-deinstall
		scripts.

	@postunexec
	 command
	Execute command as part
		of the post-deinstall
		scripts.

If command contains
	 any of these
	 sequences somewhere in it, they are expanded
	 inline. For these examples, assume that
	 @cwd is set to
	 /usr/local and the last
	 extracted file was bin/emacs.
	%F
	Expand to the last filename extracted (as
		specified). In the example case
		bin/emacs.

	%D
	Expand to the current directory prefix, as set
		with @cwd. In the example case
		/usr/local.

	%B
	Expand to the basename of the fully qualified
		filename, that is, the current directory prefix plus
		the last filespec, minus the trailing filename. In
		the example case, that would be
		/usr/local/bin.

	%f
	Expand to the filename part of the fully qualified
		name, or the converse of %B. In
		the example case,
		emacs.

7.6.13.3. @mode
	 mode
Set default permission for all subsequently extracted
	 files to mode. Format is the
	 same as that used by chmod(1). Use without an arg to
	 set back to default permissions (mode of the file while
	 being packed).
重要:
This must be a numeric mode, like
	 644, 4755, or
	 600. It cannnot be a relative mode
	 like u+s.

7.6.13.4. @owner
	 user
Set default ownership for all subsequent files to
	 user. Use without an argument to
	 set back to default ownership (root).
7.6.13.5. @group
	 group
Set default group ownership for all subsequent files to
	 group. Use without an arg to set
	 back to default group ownership (wheel).
7.6.13.6. @comment
	 string
This line is ignored when packing.
7.6.13.7. @dir
	 directory
Declare directory name. By default, directories created
	 under PREFIX by a package installation
	 are automatically removed. Use this when an empty directory
	 under PREFIX needs to be created, or when
	 the directory needs to have non default owner, group, or
	 mode. Directories outside of PREFIX need
	 to be registered. For example,
	 /var/db/${PORTNAME} needs to have a
	 @dir entry whereas
	 ${PREFIX}/share/${PORTNAME} does not if
	 it contains files or uses the default owner, group, and
	 mode.
7.6.13.8. @exec
	 command,
	 @unexec
	 command (Deprecated)
Execute command as part of
	 the installation or deinstallation process. Please use
	 節 7.6.13.2, “@preexec
	 command,
	 @postexec
	 command,
	 @preunexec
	 command,
	 @postunexec
	 command” instead.
7.6.13.9. @dirrm
	 directory (Deprecated)
Declare directory name to be deleted at deinstall time.
	 By default, directories created under
	 PREFIX by a package installation are
	 deleted when the package is deinstalled.
7.6.13.10. @dirrmtry
	 directory (Deprecated)
Declare directory name to be removed, as for
	 @dirrm, but does not issue a warning if
	 the directory cannot be removed.
7.6.14. Creating New Keywords
Package list files can be extended by keywords that are
	defined in the ${PORTSDIR}/Keywords
	directory. The settings for each keyword are stored in a
	UCL file named
	keyword.ucl.
	The file must contain at least one of these sections:
	attributes

	action

	pre-install

	post-install

	pre-deinstall

	post-deinstall

	pre-upgrade

	post-upgrade

7.6.14.1. attributes
Changes the owner, group, or mode used by the keyword.
	 Contains an associative array where the possible keys are
	 owner, group, and
	 mode. The values are, respectively, a
	 user name, a group name, and a file mode. For
	 example:
attributes: { owner: "games", group: "games", mode: 0555 }
7.6.14.2. action
Defines what happens to the keyword's parameter.
	 Contains an array where the possible values are:
	setprefix
	Set the prefix for the next plist entries.

	dir
	Register a directory to be created on install and
		removed on deinstall.

	dirrm
	Register a directory to be deleted on deinstall.
		Deprecated.

	dirrmtry
	Register a directory to try and deleted on
		deinstall. Deprecated.

	file
	Register a file.

	setmode
	Set the mode for the next plist entries.

	setowner
	Set the owner for the next plist entries.

	setgroup
	Set the group for the next plist entries.

	comment
	Does not do anything, equivalent to not entering
		an action section.

	ignore_next
	Ignore the next entry in the plist.

7.6.14.3. arguments
If set to true, adds argument
	 handling, splitting the whole line, %@,
	 into numbered arguments, %1,
	 %2, and so on. For example, for this
	 line:
@foo some.content other.content
%1 and %2 will
	 contain:
some.content
other.content
It also affects how the action
	 entry works. When there is more than one argument, the
	 argument number must be specified. For example:
actions: [file(1)]
7.6.14.4. pre-install,
	 post-install,
	 pre-deinstall,
	 post-deinstall,
	 pre-upgrade,
	 post-upgrade
These keywords contains a sh(1) script to be
	 executed before or after installation, deinstallation, or
	 upgrade of the package. In addition to the usual
	 @exec
	 %foo
	 placeholders described in 節 7.6.13.2, “@preexec
	 command,
	 @postexec
	 command,
	 @preunexec
	 command,
	 @postunexec
	 command”, there is a new one,
	 %@, which represents the argument of the
	 keyword.
7.6.14.5. Custom Keyword Examples
範例 7.1. Example of a @dirrmtryecho
	 Keyword
This keyword does two things, it adds a
	 @dirrmtry
	 directory line to
	 the packing list, and echoes the fact that the directory
	 is removed when deinstalling the package.
actions: [dirrmtry]
post-deinstall: <<EOD
 echo "Directory %D/%@ removed."
EOD

範例 7.2. Real Life Example, How @sample is
	 Implemented
This keyword does three things. It adds the first
	 filename passed as an argument
	 to @sample to the packing list, it adds
	 to the post-install script instructions
	 to copy the sample to the actual configuration file if it
	 does not already exist, and it adds to the
	 post-deinstall instructions to remove
	 the configuration file if it has not been modified.
actions: [file(1)]
arguments: true
post-install: <<EOD
 case "%1" in
 /*) sample_file="%1" ;;
 *) sample_file="%D/%1" ;;
 esac
 target_file="${sample_file%.sample}"
 set -- %@
 if [$# -eq 2]; then
 target_file=${2}
 fi
 case "${target_file}" in
 /*) target_file="${target_file}" ;;
 *) target_file="%D/${target_file}" ;;
 esac
 if ! [-f "${target_file}"]; then
 /bin/cp -p "${sample_file}" "${target_file}" && \
 /bin/chmod u+w "${target_file}"
 fi
EOD
pre-deinstall: <<EOD
 case "%1" in
 /*) sample_file="%1" ;;
 *) sample_file="%D/%1" ;;
 esac
 target_file="${sample_file%.sample}"
 set -- %@
 if [$# -eq 2]; then
 set -- %@
 target_file=${2}
 fi
 case "${target_file}" in
 /*) target_file="${target_file}" ;;
 *) target_file="%D/${target_file}" ;;
 esac
 if cmp -s "${target_file}" "${sample_file}"; then
 rm -f "${target_file}"
 else
 echo "You may need to manually remove ${target_file} if it is no longer needed."
 fi
EOD

章 8. pkg-*
There are some tricks we have not mentioned yet about the
 pkg-* files that
 come in handy sometimes.
8.1. pkg-message
To display a message when the package is installed,
 place the message in pkg-message. This
 capability is often useful to display additional installation
 steps to be taken after a pkg install or to
 display licensing information.
When some lines about the build-time knobs or warnings
 have to be displayed, use ECHO_MSG.
 pkg-message is only for
 post-installation steps. Likewise, the distinction between
 ECHO_MSG is for printing
 informational text to the screen and ECHO_CMD
 is for
 command pipelining:
update-etc-shells:
	@${ECHO_MSG} "updating /etc/shells"
	@${CP} /etc/shells /etc/shells.bak
	@(${GREP} -v ${PREFIX}/bin/bash /etc/shells.bak; \
		${ECHO_CMD} ${PREFIX}/bin/bash) >/etc/shells
	@${RM} /etc/shells.bak
注意:
Do not add an entry for pkg-message
	in pkg-plist.

8.2. pkg-install
If the port needs to execute commands when the binary
 package is installed with pkg add or
 pkg install, use
 pkg-install. This script will
 automatically be added to the package. It will be run twice by
 pkg, the first time as ${SH}
	pkg-install ${PKGNAME} PRE-INSTALL before the
 package is installed, and the second time as
 ${SH} pkg-install ${PKGNAME}
	POST-INSTALL after it has been installed.
 $2 can be tested to determine which
 mode the script is being run in. The PKG_PREFIX
 environmental variable will be set to the package installation
 directory.
8.3. pkg-deinstall
This script executes when a package is removed.
This script will be run twice by pkg
	delete The first time as ${SH}
	pkg-deinstall ${PKGNAME} DEINSTALL before the
 port is de-installed and the second time as
 ${SH} pkg-deinstall ${PKGNAME}
	POST-DEINSTALL after the port has been de-installed.
 $2 can be tested to determine which
 mode the script is being run in. The PKG_PREFIX
 environmental variable will be set to the package installation
 directory
8.4. Changing the Names of
 pkg-*
All the names of
 pkg-* are
 defined using variables that can be changed in the
 Makefile if needed. This is especially
 useful when sharing the same
 pkg-* files
 among several ports or when it is necessary to write to one of these files.
 See writing to places other than
	WRKDIR for why it is a bad idea to
 write directly into
 the directory containing the
 pkg-*
 files.
Here is a list of variable names and their default values.
 (PKGDIR defaults to
 ${MASTERDIR}.)
	Variable	Default value
	DESCR	${PKGDIR}/pkg-descr
	PLIST	${PKGDIR}/pkg-plist
	PKGINSTALL	${PKGDIR}/pkg-install
	PKGDEINSTALL	${PKGDIR}/pkg-deinstall
	PKGMESSAGE	${PKGDIR}/pkg-message

8.5. Making Use of SUB_FILES and
 SUB_LIST
SUB_FILES and
 SUB_LIST are useful for dynamic
 values in port files, such as the installation
 PREFIX in
 pkg-message.
SUB_FILES specifies a list
 of files to be automatically modified. Each
 file in the
 SUB_FILES list must have a corresponding
 file.in present
 in FILESDIR. A modified version will be
 created as
 ${WRKDIR}/file.
 Files defined as a value of USE_RC_SUBR (or
 the deprecated USE_RCORDER) are automatically
 added to SUB_FILES. For the files
 pkg-message,
 pkg-install, and
 pkg-deinstall, the corresponding Makefile
 variable is automatically set to point to the processed
 version.
SUB_LIST is a list of
 VAR=VALUE pairs. For each pair,
 %%VAR%% will be replaced with
 VALUE in each file listed in
 SUB_FILES. Several common pairs are
 automatically defined: PREFIX,
 LOCALBASE, DATADIR,
 DOCSDIR, EXAMPLESDIR,
 WWWDIR, and ETCDIR. Any
 line beginning with @comment followed by a
 space, will be deleted
 from resulting files after a variable substitution.
This example replaces
 %%ARCH%% with the system architecture in a
 pkg-message:
SUB_FILES=	pkg-message
SUB_LIST=	ARCH=${ARCH}
Note that for this example,
 pkg-message.in must exist in
 FILESDIR.
Example of a good
 pkg-message.in:
Now it is time to configure this package.
Copy %%PREFIX%%/share/examples/putsy/%%ARCH%%.conf into your home directory
as .putsy.conf and edit it.
章 9. 測試 Port
9.1. Running make describe
Several of the FreeBSD port maintenance tools, such as
 portupgrade(1), rely on a database called
 /usr/ports/INDEX which keeps track of such
 items as port dependencies. INDEX is
 created by the top-level ports/Makefile via
 make index, which descends into each port
 subdirectory and executes make describe
 there. Thus, if make describe fails in any
 port, no one can generate INDEX, and many
 people will quickly become unhappy.
注意:
It is important to be able to generate this file no matter
	what options are present in make.conf, so
	please avoid doing things such as using
	.error statements when (for instance) a
	dependency is not satisfied. (See
	節 12.15, “Avoid Use of the .error
 Construct”.)

If make describe produces a string rather
 than an error message, everything is probably safe. See
 bsd.port.mk for the meaning of the string
 produced.
Also note that running a recent version of
 portlint (as specified in the next section)
 will cause make describe to be run
 automatically.
9.2. Portlint
Do check the port with portlint
 before submitting or committing it. portlint
 warns about many common errors, both functional and
 stylistic. For a new (or repocopied) port,
 portlint -A is the most thorough; for an
 existing port, portlint -C is
 sufficient.
Since portlint uses heuristics to try to
 figure out errors, it can produce false positive warnings. In
 addition, occasionally something that is flagged as a problem
 really cannot be done in any other way due to limitations in the
 ports framework. When in doubt, the best thing to do is ask on
 FreeBSD ports mailing list.
9.3. Port 工具
The ports-mgmt/porttools
 program is part of the Ports Collection.
port is the front-end script, which can
 help simplify the testing job. Whenever a new port or an update
 to an existing one needs testing, use
 port test to test the port, including the
 portlint
 checking. This command also detects and lists any files that
 are not listed in pkg-plist. For
 example:
port test /usr/ports/net/csup
9.4. PREFIX 以及 DESTDIR
PREFIX 變數會決定該 port 所會安裝的位置。預設是　/usr/local　， 但是使用者可以設定程自訂的路徑，像是 /opt　。 必須遵循此變數的值。
若使用者有設定 DESTDIR 變數， 那麼它會採用所設定的環境，通常可能是 jail 環境或者是並非掛載於 / 上的系統。 通常 port 會裝在 DESTDIR/PREFIX 底下， 並且會紀錄在 DESTDIR/var/db/pkg 內的套件資料庫。 由於事實上 DESTDIR 會由 ports 架構透過 chroot(8) 來自動處理，所以您不需去作相關修改或刻意維護 DESTDIR 相容的 ports。
PREFIX 會設為 LOCALBASE (預設為 /usr/local)。 若有設定 USE_LINUX_PREFIX， 那麼 PREFIX 則為 LINUXBASE (預設為 /compat/linux)。
Avoiding hard-coded /usr/local paths in
 the source makes the port much more flexible and able to cater
 to the needs of other sites. Often, this can be accomplished by
 replacing occurrences of /usr/local
 in the port's various Makefiles with
 ${PREFIX}. This variable is
 automatically passed down to every stage of the build and
 install processes.
Make sure the application is not installing things in
 /usr/local instead of
 PREFIX. A quick test for such hard-coded
 paths is:
% make clean; make package PREFIX=/var/tmp/`make -V PORTNAME`
If anything is installed outside of
 PREFIX, the package creation process will
 complain that it cannot find the files.
In addition, it is worth checking the same with the stage
 directory support (see 節 6.1, “Staging”):
% make stage && make check-plist && make stage-qa && make package
	check-plist checks for files
	 missing from the plist, and files in the plist that are not
	 installed by the port.

	stage-qa checks for common
	 problems like bad shebang, symlinks pointing outside the
	 stage directory, setuid files, and non-stripped
	 libraries...

These tests will not find hard-coded paths inside the port's
 files, nor will it verify that LOCALBASE is
 being used to correctly refer to files from other ports. The
 temporarily-installed port in
 /var/tmp/`make -V PORTNAME` must be
 tested for proper operation to make sure there are no problems
 with paths.
PREFIX must not be set explicitly in a
 port's Makefile. Users installing the port
 may have set PREFIX to a custom location, and
 the port must respect that setting.
Refer to programs and files from other ports with the
 variables mentioned above, not explicit pathnames. For
 instance, if the port requires a macro PAGER
 to have the full pathname of less, do not use
 a literal path of /usr/local/bin/less.
 Instead, use ${LOCALBASE}:
-DPAGER=\"${LOCALBASE}/bin/less\"
The path with LOCALBASE is more likely to
 still work if the system administrator has moved the whole
 /usr/local tree somewhere else.
提示:
All these tests are done automatically when running
	poudriere testport or poudriere
	 bulk -t. It is highly recommended that every
	ports contributor install it, and tests all his ports with it.
	See 節 9.5, “Poudriere” for more
	information.

9.5. Poudriere
For a ports contributor,
 Poudriere is one of the most
 important and helpful testing and build tools. Its main
 features include:
	Bulk building of the entire ports tree, specific subsets
	 of the ports tree, or a single port including its
	 dependencies

	Automatic packaging of build results

	Generation of build log files per port

	Providing a signed pkg(8) repository

	Testing of port builds before submitting a patch to the
	 FreeBSD bug tracker or committing to the ports tree

	Testing for successful ports builds using different
	 options

Because Poudriere performs its
 building in a clean jail(8) environment and uses
 zfs(8) features, it has several advantages over traditional
 testing on the host system:
	No pollution of the host environment: No leftover files,
	 no accidental removals, no changes of existing configuration
	 files.

	Verify pkg-plist for missing or
	 superfluous entries

	Ports committers sometimes ask for a
	 Poudriere log alongside a patch
	 submission to assess whether the patch is ready for
	 integration into the ports tree

It is also quite straightforward to set up and use, has no
 dependencies, and will run on any supported FreeBSD release. This
 section shows how to install, configure, and run
 Poudriere as part of the normal
 workflow of a ports contributor.
The examples in this section show a default file layout, as
 standard in FreeBSD. Substitute any local changes accordingly.
 The ports tree, represented by ${PORTSDIR},
 is located in /usr/ports. Both
 ${LOCALBASE} and ${PREFIX}
 are /usr/local by default.
9.5.1. Installing Poudriere
Poudriere is available in the
	ports tree in ports-mgmt/poudriere. It can be
	installed using pkg(8) or from ports:
pkg install poudriere
or
make -C /usr/ports/ports-mgmt/poudriere install clean
There is also a work-in-progress version of
	Poudriere which will eventually
	become the next release. It is available in ports-mgmt/poudriere-devel. This
	development version is used for the official FreeBSD package
	builds, so it is well tested. It often has newer interesting
	features. A ports committer will want to use the development
	version because it is what is used in production, and has all
	the new features that will make sure everything is exactly
	right. A contributor will not necessarily need those as the
	most important fixes are backported to released version. The
	main reason for the use of the development version to build
	the official package is because it is faster, in a way that
	will shorten a full build from 18 hours to 17 hours when using
	a high end 32 CPU server with 128GB of
	RAM. Those optimizations will not matter a
	lot when building ports on a desktop machine.
9.5.2. Setting Up Poudriere
The port installs a default configuration file,
	/usr/local/etc/poudriere.conf. Each
	parameter is documented in the configuration file and in
	poudriere(8). Here is a minimal example config
	file:
ZPOOL=tank
ZROOTFS=/poudriere
BASEFS=/poudriere
DISTFILES_CACHE=/usr/ports/distfiles
RESOLV_CONF=/etc/resolv.conf
FREEBSD_HOST=ftp://ftp.freebsd.org
SVN_HOST=svn.FreeBSD.org
	ZPOOL
	The name of the ZFS storage pool
	 which Poudriere shall use.
	 Must be listed in the output of zpool
		status.

	ZROOTFS
	The root of
	 Poudriere-managed file
	 systems. This entry will cause
	 Poudriere to create
	 zfs(8) file systems under
	 tank/poudriere.

	BASEFS
	The root mount point for
	 Poudriere file systems. This
	 entry will cause Poudriere to
	 mount tank/poudriere to
	 /poudriere.

	DISTFILES_CACHE
	Defines where distfiles are stored. In this
	 example, Poudriere and the
	 host share the distfiles storage directory. This avoids
	 downloading tarballs which are already present on the
	 system.

	RESOLV_CONF
	Use the host /etc/resolv.conf
	 inside jails for DNS. This is needed
	 so jails can resolve the URLs of
	 distfiles when downloading. It is not needed when using
	 a proxy. Refer to the default configuration file for
	 proxy configuration.

	FREEBSD_HOST
	The FTP/HTTP
	 server to use when the jails are installed from FreeBSD
	 releases and updated with freebsd-update(8).
	 Choose a server location which is close, for example if
	 the machine is located in Australia, use
	 ftp.au.freebsd.org.

	SVN_HOST
	The server from where jails are installed and
	 updated when using
	 Subversion. Also used for
	 ports tree when not using portsnap(8). Again,
	 choose a nearby location. A list of official
	 Subversion mirrors can be
	 found in the FreeBSD
		Handbook Subversion
		section.

9.5.3. Creating Poudriere
	Jails
Create the base jails which
	Poudriere will use for
	building:
poudriere jail -c -j 93Ramd64 -v 9.3-RELEASE -a amd64
Fetch a 9.3-RELEASE for
	amd64 from the FTP
	server given by FREEBSD_HOST in
	poudriere.conf, create the zfs file
	system tank/poudriere/jails/93Ramd64, mount
	it on /poudriere/jails/93Ramd64 and
	extract the 9.3-RELEASE tarballs into this
	file system.
poudriere jail -c -j 10i386 -v stable/10 -a i386 -m svn+https
Create tank/poudriere/jails/10i386,
	mount it on /poudriere/jails/10i386, then
	check out the tip of the Subversion
	branch of FreeBSD-10-STABLE from
	SVN_HOST in
	poudriere.conf into
	/poudriere/jails/10i386/usr/src, then
	complete a buildworld and install
	it into /poudriere/jails/10i386.
提示:
If a specific Subversion
	 revision is needed, append it to the version string. For
	 example:
poudriere jail -c -j 10i386 -v stable/10@123456 -a i386 -m svn+https

注意:
While it is possible to build a newer version of FreeBSD on
	 an older version, most of the time it will not run. For
	 example, if a stable/10 jail is needed,
	 the host will have to run stable/10 too.
	 Running 10.0-RELEASE is not
	 enough.

注意:
The default svn protocol works but is
	 not very secure. Using svn+https along
	 with verifying the remote server's SSL
	 fingerprint is advised. It will ensure that the files used
	 for building the jail are from a trusted source.

A list of jails currently known to
	Poudriere can be shown with
	poudriere jail -l:
poudriere jail -l
JAILNAME VERSION ARCH METHOD
93Ramd64 9.3-RELEASE amd64 ftp
10i386 10.0-STABLE i386 svn+https
9.5.4. Keeping Poudriere Jails
	Updated
Managing updates is very straightforward. The
	command:
poudriere jail -u -j JAILNAME
updates the specified jail to the latest version
	available. For FreeBSD releases, update to the latest patchlevel
	with freebsd-update(8). For FreeBSD versions built from
	source, update to the latest
	Subversion revision in the
	branch.
提示:
For jails employing a
	 svn+* method,
	 it is helpful to add -J
	 NumberOfParallelBuildJobs
	 to speed up the build by increasing the number of parallel
	 compile jobs used. For example, if the building machine has
	 6 CPUs, use:
poudriere jail -u -J 6 -j JAILNAME

9.5.5. Setting Up Ports Trees for Use with
	Poudriere
There are multiple ways to use ports trees in
	Poudriere. The most
	straightforward way is to have
	Poudriere create a default ports
	tree for itself:
poudriere ports -c
This command creates
	tank/poudriere/ports/default, mount it on
	/poudriere/ports/default, and populate it
	using portsnap(8). Afterward it is included in the list
	of known ports trees:
poudriere ports -l
PORTSTREE METHOD PATH
default portsnap /poudriere/ports/default
注意:
Note that the “default” ports tree is
	 special. Each of the build commands explained later will
	 implicitly use this ports tree unless specifically specified
	 otherwise. To use another tree, add -p
	 treename to the
	 commands.

While useful for regular bulk builds, having this default
	ports tree with the portsnap(8) method may not be the
	best way to deal with local modifications for a ports
	contributor. As with the creation of jails, it is possible to
	use a different method for creating the ports tree. To add an
	additional ports tree for testing local modifications and
	ports development, checking out the tree via
	Subversion is possible:
poudriere ports -c -m svn+https -p subversive
Creates tank/poudriere/ports/subversive
	and mounts it on
	/poudriere/ports/subversive. It is then
	populated using Subversion.
	Finally, it is added to the list of known ports trees:
poudriere ports -l
PORTSTREE METHOD PATH
default portsnap /poudriere/ports/default
subversive svn+https /poudriere/ports/subversive
提示:
The svn method allows extra
	 qualifiers to tell Subversion
	 exactly how to fetch data. This is explained in
	 poudriere(8). For instance, poudriere ports
	 -c -m svn+ssh -p subversive uses
	 SSH for the checkout.

9.5.6. Using Manually Managed Ports Trees with Poudriere
Depending on the workflow, it can be extremely helpful to
	use ports trees which are maintained manually. For instance,
	if there is a local copy of the ports tree in
	/work/ports, point
	Poudriere to the location:
poudriere ports -c -F -f none -M /work/ports -p development
This will be listed in the table of known trees:
poudriere ports -l
PORTSTREE METHOD PATH
development - /work/ports
注意:
The dash in the METHOD column means
	 that Poudriere will not update or
	 change this ports tree, ever. It is completely up to the
	 user to maintain this tree, including all local
	 modifications that may be used for testing new ports and
	 submitting patches.

9.5.7. Keeping Poudriere Ports Trees Updated
As straightforward as with jails described earlier:
poudriere ports -u -p PORTSTREE
Will update the given
	PORTSTREE, one tree given by the
	output of poudriere -l, to the latest
	revision available on the official servers.
注意:
Ports trees without a method, see 節 9.5.6, “Using Manually Managed Ports Trees with Poudriere”, cannot be
	 updated like this. They must be updated manually by the
	 porter.

9.5.8. Testing Ports
After jails and ports trees have been set up, the result
	of a contributor's modifications to the ports tree can be
	tested.
For example, local modifications to the www/firefox port located in
	/work/ports/www/firefox can be tested in
	the previously created 9.3-RELEASE jail:
poudriere testport -j 93Ramd64 -p development -o www/firefox
This will build all dependencies of
	Firefox. If a dependency has been
	built previously and is still up-to-date, the pre-built
	package is installed. If a dependency has no up-to-date
	package, one will be built with default options in a jail.
	Then Firefox itself is
	built.
The complete build of every port is logged to
	/poudriere/data/logs/bulk/93Ri386-development/build-time/logs.
The directory name 93Ri386-development
	is derived from the arguments to -j and
	-p, respectively. For convenience, a
	symbolic link
	/poudriere/data/logs/bulk/93Ri386-development/latest
	is also maintained. The link points to the latest
	build-time directory. Also in this
	directory is an index.html for observing
	the build process with a web browser.
By default, Poudriere cleans up
	the jails and leaves log files in the directories mentioned
	above. To ease investigation, jails can be kept running after
	the build by adding -i to
	testport:
poudriere testport -j 93Ramd64 -p development -i -o www/firefox
After the build completes, and regardless of whether it
	was successful, a shell is provided within the jail. The
	shell is used to investigate further.
	Poudriere can be told to leave the
	jail running after the build finishes with
	-I. Poudriere
	will show the command to run when the jail is no longer
	needed. It is then possible to jexec(8) into it:
poudriere testport -j 93Ramd64 -p development -I -o www/firefox
[...]
====>> Installing local Pkg repository to /usr/local/etc/pkg/repos
====>> Leaving jail 93Ramd64-development-n running, mounted at /poudriere/data/.m/93Ramd64-development/ref for interactive run testing
====>> To enter jail: jexec 93Ramd64-development-n env -i TERM=$TERM /usr/bin/login -fp root
====>> To stop jail: poudriere jail -k -j 93Ramd64 -p development
jexec 93Ramd64-development-n env -i TERM=$TERM /usr/bin/login -fp root
[do some stuff in the jail]
exit
poudriere jail -k -j 93Ramd64 -p development
====>> Umounting file systems
An integral part of the FreeBSD ports build infrastructure is
	the ability to tweak ports to personal preferences with
	options. These can be tested with
	Poudriere as well. Adding the
	-c:
poudriere testport -c -o www/firefox
Presents the port configuration dialog before the port is
	built. The ports given after -o in the
	format
	category/portname
	will use the specified options, all dependencies will use the
	default options. Testing dependent ports with non-default
	options can be accomplished using sets, see 節 9.5.9, “Using Sets”.
提示:
When testing ports where pkg-plist
	 is altered during build depending on the selected options,
	 it is recommended to perform a test run with all options
	 selected and one with all options
	 deselected.

9.5.9. Using Sets
For all actions involving builds, a so-called
	set can be specified using -z
	 setname. A set refers
	to a fully independent build. This allows, for instance,
	usage of testport with non-standard options
	for the dependent ports.
To use sets, Poudriere expects
	an existing directory structure similar to
	PORT_DBDIR, defaults to
	/var/db/ports in its configuration
	directory. This directory is then nullfs-mounted into the
	jails where the ports and their dependencies are built.
	Usually a suitable starting point can be obtained by
	recursively copying the existing PORT_DBDIR
	to
	/usr/local/etc/poudriere.d/jailname-portname-setname-options.
	This is described in detail in poudriere(8). For
	instance, testing www/firefox
	in a specific set named devset, add the
	-z devset parameter to the testport
	command:
poudriere testport -j 93Ramd64 -p development -z devset -o www/firefox
This will look for the existence of these directories in
	this order:
	/usr/local/etc/poudriere.d/93Ramd64-development-devset-options

	/usr/local/etc/poudriere.d/93Ramd64-devset-options

	/usr/local/etc/poudriere.d/93Ramd64-development-options

	/usr/local/etc/poudriere.d/devset-options

	/usr/local/etc/poudriere.d/development-options

	/usr/local/etc/poudriere.d/93Ramd64-options

	/usr/local/etc/poudriere.d/options

From this list, Poudriere
	nullfs-mounts the first existing
	directory tree into the /var/db/ports
	directory of the build jails. Hence, all custom options are
	used for all the ports during this run of
	testport.
After the directory structure for a set is provided, the
	options for a particular port can be altered. For
	example:
poudriere options -c www/firefox -z devset
The configuration dialog for www/firefox is shown, and options can
	be edited. The selected options are saved to the
	devset set.
注意:
Poudriere is very flexible in
	 the option configuration. They can be set for particular
	 jails, ports trees, and for multiple ports by one command.
	 Refer to poudriere(8) for details.

9.5.10. Providing a Custom make.conf
	File
Similar to using sets,
	Poudriere will also use a custom
	make.conf if it is provided. No special
	command line argument is necessary. Instead,
	Poudriere looks for existing files
	matching a name scheme derived from the command line. For
	instance:
poudriere testport -j 93Ramd64 -p development -z devset -o www/firefox
causes Poudriere to check for
	the existence of these files in this order:
	/usr/local/etc/poudriere.d/make.conf

	/usr/local/etc/poudriere.d/devset-make.conf

	/usr/local/etc/poudriere.d/development-make.conf

	/usr/local/etc/poudriere.d/93Ramd64-make.conf

	/usr/local/etc/poudriere.d/93Ramd64-development-make.conf

	/usr/local/etc/poudriere.d/93Ramd64-devset-make.conf

	/usr/local/etc/poudriere.d/93Ramd64-development-devset-make.conf

Unlike with sets, all of the found files will be appended,
	in that order, into one
	make.conf inside the build jails. It is
	hence possible to have general make variables, intended to
	affect all builds in
	/usr/local/etc/poudriere.d/make.conf.
	Special variables, intended to affect only certain jails or
	sets can be set in specialised make.conf
	files, such as
	/usr/local/etc/poudriere.d/93Ramd64-development-devset-make.conf.
範例 9.1. Using make.conf to Change Default
	 Perl
To build a set with a non default
	 Perl version, for example,
	 5.20, using a set named
	 perl5-20, create a
	 perl5-20-make.conf with this
	 line:
DEFAULT_VERSIONS+= perl=5.20
注意:
Note the use of += so that if the
	 variable is already set in the default
	 make.conf its content will not be
	 overwritten.

9.5.11. Pruning no Longer Needed Distfiles
Poudriere comes with a built-in
	mechanism to remove outdated distfiles that are no longer used
	by any port of a given tree. The command
poudriere distclean -p portstree
will scan the distfiles folder,
	DISTFILES_CACHE in
	poudriere.conf, versus the ports tree
	given by the -p
	 portstree argument and
	prompt for removal of those distfiles. To skip the prompt and
	remove all unused files unconditionally, the
	-y argument can be added:
poudriere distclean -p portstree -y
9.6. Tinderbox
As an avid ports contributor, take
 a look at Tinderbox. It is a
 powerful system for building and testing ports. Install
 Tinderbox using
 ports-mgmt/tinderbox port. Be
 sure to read supplied documentation since the configuration is
 not trivial.
Visit the
 Tinderbox
	website for more details.
章 10. Upgrading a Port
When a port is not the most recent version available from the
 authors, update the local working copy of
 /usr/ports. The port might have already been
 updated to the new version.
When working with more than a few ports, it will probably be
 easier to use Subversion to keep
 the whole ports collection up-to-date, as described in the Handbook.
 This will have the added benefit of tracking all the port's
 dependencies.
The next step is to see if there is an update already pending.
 To do this, there are two options. There is a searchable
 interface to the FreeBSD Problem
 Report (PR) or bug database. Select Ports
 Tree in the Product dropdown, and
 enter the name of the port in the Summary
 field.
However, sometimes people forget to put the name of the port
 into the Summary field in an unambiguous fashion. In that
 case, try searching in the Comment field in
 the Detailled Bug Information section, or try
 the
 FreeBSD Ports Monitoring System
 (also known as portsmon). This system
 attempts to classify port PRs by portname. To search for PRs
 about a particular port, use the Overview
 of One Port.
If there is no pending PR, the next step is to send an email
 to the port's maintainer, as shown by
 make maintainer. That person may already be
 working on an upgrade, or have a reason to not upgrade the port
 right now (because of, for example, stability problems of the
 new version), and there is no need to duplicate their work. Note
 that unmaintained ports are listed with a maintainer of
 ports@FreeBSD.org, which is just the general
 ports mailing list, so sending mail there probably will not help
 in this case.
If the maintainer asks you to do the upgrade or there is
 no maintainer, then help out FreeBSD by
 preparing the update! Please do this by using the
 diff(1) command in the base system.
To create a suitable diff for a single
 patch, copy the file that needs patching to
 something.orig,
 save the changes to
 something and then
 create the patch:
% diff -u something.orig something > something.diff

Otherwise, either use the
 svn diff method (節 10.1, “Using Subversion to Make
 Patches”)
 or copy the contents of the port to an entire different
 directory and use the result of the recursive diff(1)
 output of the new and old ports directories (for example, if the
 modified port directory is called superedit
 and the original is in our tree as
 superedit.bak, then save the result of
 diff -ruN superedit.bak superedit). Either
 unified or context diff is fine, but port committers generally
 prefer unified diffs. Note the use of the -N
 option—this is the accepted way to force diff to properly
 deal with the case of new files being added or old files being
 deleted. Before sending us the diff, please examine the output
 to make sure all the changes make sense. (In particular, make
 sure to first clean out the work directories with
 make clean).
注意:
If some files have been added, copied, moved, or removed,
 add this information to the problem report so that the committer
 picking up the patch will know what svn(1) commands to
 run.

To simplify common operations with patch files, use
 make makepatch as described in 節 4.4, “Patching”.
 Other tools exists, like
 /usr/ports/Tools/scripts/patchtool.py.
 Before using it, please read
 /usr/ports/Tools/scripts/README.patchtool.
If the port is unmaintained, and you are actively using
 it, please consider volunteering to become its
 maintainer. FreeBSD has over 4000 ports without maintainers, and
 this is an area where more volunteers are always needed. (For a
 detailed description of the responsibilities of maintainers,
 refer to the section in the Developer's
 Handbook.)
To submit the diff, use the bug submit
 form (product Ports & Packages,
 component Individual Port(s)). If the
 submitter is also
 maintaining the port, be sure to put
 [MAINTAINER] at the beginning of the
 Summary line. Always include the category
 with the port name, followed by colon, and brief descripton of the
 issue. For example:
 category/portname:
 add FOO option, or if
 maintaining the port, [MAINTAINER]
 category/portname:
 Update to X.Y.
 Please mention any added or
 deleted files in the message, as they have to be explicitly
 specified to svn(1) when doing a commit. Do not compress or
 encode the diff.
Before submitting the bug, review the
 Writing the problem report section in the Problem
 Reports article. It contains far more information about how to
 write useful problem reports.
重要:
If the upgrade is motivated by security concerns or a
 serious fault in the currently committed port, please notify
 the Ports Management Team <portmgr@FreeBSD.org> to request immediate rebuilding and
 redistribution of the port's package. Unsuspecting users
 of pkg will otherwise continue to install
 the old version via pkg install for several
 weeks.

注意:
Once again, please use diff(1) and not shar(1)
 to send updates to existing ports! This helps ports
 committers understand exactly what is being changed.

Now that all of that is done, read about
 how to keep up-to-date in 章 14, Keeping Up.
10.1. Using Subversion to Make
 Patches
When possible, please submit a svn(1) diff. They
 are easier to handle than diffs between
 “new and old” directories. It is easier
 to see what has changed, and to update the diff if
 something was modified in the Ports Collection since the
 work on it began, or if the
 committer asks for something to be fixed. Also, a patch
 generated with svn diff can be easily applied
 with svn patch and will save some time to the
 committer.
% cd ~/my_wrkdir [image: 1]
% svn co https://svn.FreeBSD.org/ports/head/dns/pdnsd [image: 2]
% cd ~/my_wrkdir/pdnsd
	[image: 1]
	This can be anywhere, of course. Building
	 ports is not limited to within
	 /usr/ports/.

	[image: 2]
	svn.FreeBSD.org
	 is the FreeBSD public Subversion
	 server. See Subversion
	 mirror sites for more information.

While in the port directory, make any changes that are
 needed. If adding, copying, moving, or removing a
 file, use svn to track these changes:
% svn add new_file
% svn copy some_file file_copy
% svn move old_name new_name
% svn remove deleted_file
Make sure to check the port using the checklist in
 節 3.4, “測試 Port” and
 節 3.5, “以 portlint 來作檢查 Port”.
% svn status
% svn update [image: 1]
	[image: 1]
	This will attempt to merge the differences between the
	 patch and current repository version. Watch the output
	 carefully. The letter in front of each file name
	 indicates what was done with it. See
	 表格 10.1, “Subversion Update File
	Prefixes” for a complete list.

表格 10.1. Subversion Update File
	Prefixes
	U	The file was updated without problems.
	G	The file was updated without problems (only when
	 working against a remote
	 repository).
	M	The file had been modified, and was merged
	 without conflicts.
	C	The file had been modified, and was merged with
	 conflicts.

If C is displayed as a result of
 svn update, it means something changed in
 the Subversion repository and
 svn(1) was not able to merge the local changes with those
 from the repository. It is always a good idea to inspect the
 changes anyway, since svn(1) does not know anything about
 the structure of a port, so it might (and probably will) merge
 things that do not make sense.
The last step is to make a unified diff(1)
 of the changes:
% svn diff > ../`make -VPKGNAME`.diff
注意:
If files have been added, copied, moved, or removed,
	include the svn(1) add,
	copy, move, and
	remove commands that were used.
	svn move or svn copy
	must be run before the patch can be applied. svn
	 add or svn remove must be run
	after the patch is applied.

Send the patch following the problem
	report submission guidelines.
提示:
The patch can be automatically generated and the PR
	pre-filled with the contact information by using
	port submit. See 節 9.3, “Port 工具” for more details.

10.2. UPDATING and
 MOVED
10.2.1. /usr/ports/UPDATING
If upgrading the port requires special steps like
	changing configuration files or running a specific program,
	it must be documented in this file. The format of
	an entry in this file is:
YYYYMMDD:
 AFFECTS: users of portcategory/portname
 AUTHOR: Your name <Your email address>

 Special instructions
提示:
When including exact
	 portmaster,
	 portupgrade, and/or
	 pkg instructions, please make
	 sure
	 to get the shell escaping right. For example, do
	 not use:
pkg delete -g -f docbook-xml* docbook-sk* docbook[2345]??-* docbook-4*
As shown, the command will only work with
	 bourne shells. Instead, use the
	 form shown below, which will work with both
	 bourne shell and
	 c-shell:
pkg delete -g -f docbook-xml* docbook-sk* docbook\[2345\]\?\?-* docbook-4*

注意:
It is recommended that the AFFECTS line contains a glob
	 matching all the ports affected by the entry so that
	 automated tools can parse it as easily as possible. If an
	 update concerns all the existing BIND
	 9 versions the AFFECTS
	 content must be users of dns/bind9*, it
	 must not be users of BIND
	 9

10.2.2. /usr/ports/MOVED
This file is used to
	list moved or removed ports. Each line in the file is made
	up of the name of the port, where the port was moved, when,
	and why. If the port was removed, the section detailing where
	it was moved can be left blank. Each section must be
	separated by the | (pipe) character, like
	so:
old name|new name (blank for deleted)|date of move|reason
The date must be entered in the form
	YYYY-MM-DD. New entries are added to
	the top of the file to keep it in reverse chronological order,
	with the last entry first.
If a port was removed but has since been restored,
	delete the line in this file that states that it was
	removed.
If a port was renamed and then renamed back to its
	original name, add a new one with the intermediate name to the
	old name, and remove the old entry as to not create a
	loop.
注意:
Any changes must be validated with
	 Tools/scripts/MOVEDlint.awk.
If using a ports directory other than
	 /usr/ports, use:
% cd /home/user/ports
 % env PORTSDIR=$PWD Tools/scripts/MOVEDlint.awk

章 11. 安全性
11.1. Why Security is So Important
Bugs are occasionally introduced to the software. Arguably,
 the most dangerous of them are those opening security
 vulnerabilities. From the technical viewpoint, such
 vulnerabilities are to be closed by exterminating the bugs that
 caused them. However, the policies for handling mere bugs and
 security vulnerabilities are very different.
A typical small bug affects only those users who have
 enabled some combination of options triggering the bug. The
 developer will eventually release a patch followed by a new
 version of the software, free of the bug, but the majority of
 users will not take the trouble of upgrading immediately because
 the bug has never vexed them. A critical bug that may cause
 data loss represents a graver issue. Nevertheless, prudent
 users know that a lot of possible accidents, besides software
 bugs, are likely to lead to data loss, and so they make backups
 of important data; in addition, a critical bug will be
 discovered really soon.
A security vulnerability is all different. First, it may
 remain unnoticed for years because often it does not cause
 software malfunction. Second, a malicious party can use it to
 gain unauthorized access to a vulnerable system, to destroy or
 alter sensitive data; and in the worst case the user will not
 even notice the harm caused. Third, exposing a vulnerable
 system often assists attackers to break into other systems that
 could not be compromised otherwise. Therefore closing a
 vulnerability alone is not enough: notify the audience
 of it in the most clear and comprehensive manner, which
 will allow them to evaluate the danger and take appropriate
 action.
11.2. Fixing Security Vulnerabilities
While on the subject of ports and packages, a security
 vulnerability may initially appear in the original distribution
 or in the port files. In the former case, the original software
 developer is likely to release a patch or a new version
 instantly. Update the port promptly
 with respect to the author's fix. If the fix is delayed for
 some reason, either
 mark the port as
 FORBIDDEN or introduce a patch file
 to the port. In the case of a vulnerable port, just
 fix the port as soon as possible. In either case, follow
 the standard procedure for
 submitting changes unless having
 rights to commit it directly to the ports tree.
重要:
Being a ports committer is not enough to commit to an
	arbitrary port. Remember that ports usually have maintainers,
	must be respected.

Please make sure that the port's revision is bumped as soon
 as the vulnerability has been closed. That is how the users who
 upgrade installed packages on a regular basis will see they need
 to run an update. Besides, a new package will be built and
 distributed over FTP and WWW mirrors, replacing the vulnerable
 one. Bump PORTREVISION unless
 PORTVERSION has changed in the course of
 correcting the vulnerability. That is, bump
 PORTREVISION if adding a patch file
 to the port, but do not bump it if updating the port to
 the latest software version and thus already touched
 PORTVERSION. Please refer to the
 corresponding
	section for more information.
11.3. Keeping the Community Informed
11.3.1. The VuXML Database
A very important and urgent step to take as early after a
	security vulnerability is discovered as possible is to notify
	the community of port users about the jeopardy. Such
	notification serves two purposes. First, if the danger is
	really severe it will be wise to apply an instant workaround.
	For example, stop the affected network service or even
	deinstall the port completely until the vulnerability is
	closed. Second, a lot of users tend to upgrade installed
	packages only occasionally. They will know from the
	notification that they must update the
	package without delay as soon as a corrected version is
	available.
Given the huge number of ports in the tree, a security
	advisory cannot be issued on each incident without creating a
	flood and losing the attention of the audience when it comes
	to really serious matters. Therefore security vulnerabilities
	found in ports are recorded in
	the FreeBSD
	 VuXML database. The Security Officer Team members
	also monitor it for issues requiring their
	intervention.
Committers can update the VuXML
	database themselves, assisting the Security Officer Team and
	delivering crucial information to the community more quickly.
	Those who are not committers or have discovered an
	exceptionally severe vulnerability should not hesitate to
	contact the Security Officer Team directly, as described on
	the FreeBSD
	 Security Information page.
The VuXML database is an XML document.
	Its source file vuln.xml is kept right
	inside the port security/vuxml.
	Therefore the file's full pathname will be
	PORTSDIR/security/vuxml/vuln.xml. Each
	time a security vulnerability is discovered in a port, please
	add an entry for it to that file. Until familiar with
	VuXML, the best thing to do is to find an existing entry
	fitting the case at hand, then copy it and use it as a
	template.
11.3.2. A Short Introduction to VuXML
The full-blown XML format is complex,
	and far beyond the scope of this book. However, to gain basic
	insight on the structure of a VuXML entry only the notion of
	tags is needed. XML tag names are enclosed in angle brackets.
	Each opening <tag> must have a matching closing
	</tag>. Tags may be nested. If nesting, the inner tags
	must be closed before the outer ones. There is a hierarchy of
	tags, that is, more complex rules of nesting them. This is
	similar to HTML. The major difference is that XML is
	eXtensible, that is, based on defining
	custom tags. Due to its intrinsic structure XML puts
	otherwise amorphous data into shape. VuXML is particularly
	tailored to mark up descriptions of security
	vulnerabilities.
Now consider a realistic VuXML entry:
<vuln vid="f4bc80f4-da62-11d8-90ea-0004ac98a7b9"> [image: 1]
 <topic>Several vulnerabilities found in Foo</topic> [image: 2]
 <affects>
 <package>
 <name>foo</name> [image: 3]
 <name>foo-devel</name>
 <name>ja-foo</name>
 <range><ge>1.6</ge><lt>1.9</lt></range> [image: 4]
 <range><ge>2.*</ge><lt>2.4_1</lt></range>
 <range><eq>3.0b1</eq></range>
 </package>
 <package>
 <name>openfoo</name> [image: 5]
 <range><lt>1.10_7</lt></range> [image: 6]
 <range><ge>1.2,1</ge><lt>1.3_1,1</lt></range>
 </package>
 </affects>
 <description>
 <body xmlns="http://www.w3.org/1999/xhtml">
 <p>J. Random Hacker reports:</p> [image: 7]
 <blockquote
 cite="http://j.r.hacker.com/advisories/1">
 <p>Several issues in the Foo software may be exploited
 via carefully crafted QUUX requests. These requests will
 permit the injection of Bar code, mumble theft, and the
 readability of the Foo administrator account.</p>
 </blockquote>
 </body>
 </description>
 <references> [image: 8]
 <freebsdsa>SA-10:75.foo</freebsdsa> [image: 9]
 <freebsdpr>ports/987654</freebsdpr> [image: 10]
 <cvename>CAN-2010-0201</cvename> [image: 11]
 <cvename>CAN-2010-0466</cvename>
 <bid>96298</bid> [image: 12]
 <certsa>CA-2010-99</certsa> [image: 13]
 <certvu>740169</certvu> [image: 14]
 <uscertsa>SA10-99A</uscertsa> [image: 15]
 <uscertta>SA10-99A</uscertta> [image: 16]
 <mlist msgid="201075606@hacker.com">http://marc.theaimsgroup.com/?l=bugtraq&m=203886607825605</mlist> [image: 17]
 <url>http://j.r.hacker.com/advisories/1</url> [image: 18]
 </references>
 <dates>
 <discovery>2010-05-25</discovery> [image: 19]
 <entry>2010-07-13</entry> [image: 20]
 <modified>2010-09-17</modified> [image: 21]
 </dates>
</vuln>
The tag names are supposed to be self-explanatory so we
	shall take a closer look only at fields which needs to be
	filled in:
	[image: 1]
	This is the top-level tag of a VuXML entry. It has a
	 mandatory attribute, vid, specifying a
	 universally unique identifier (UUID) for this entry (in
	 quotes). Generate a UUID for each new VuXML
	 entry (and do not forget to substitute it for the template
	 UUID unless writing the entry from scratch).
	 use uuidgen(1) to generate a VuXML UUID.

	[image: 2]
	This is a one-line description of the issue
	 found.

	[image: 3]
	The names of packages affected are listed there.
	 Multiple names can be given since several packages may be
	 based on a single master port or software product. This
	 may include stable and development branches, localized
	 versions, and slave ports featuring different choices of
	 important build-time configuration options.
重要:
It is the submitter's responsibility to find all
	 such related packages when writing a VuXML entry. Keep
	 in mind that make search name=foo is
	 helpful. The primary points to look for are:
	the foo-devel variant for a
		 foo port;

	other variants with a suffix like
		 -a4 (for print-related packages),
		 -without-gui (for packages with X
		 support disabled), or similar;

	jp-, ru-,
		 zh-, and other possible localized
		 variants in the corresponding national categories of
		 the ports collection.

	[image: 4]
	Affected versions of the package(s) are specified
	 there as one or more ranges using a combination of
	 <lt>,
	 <le>,
	 <eq>,
	 <ge>, and
	 <gt> elements. Check that the
	 version ranges given do not overlap.
In a range specification, *
	 (asterisk) denotes the smallest version number. In
	 particular, 2.* is less than
	 2.a. Therefore an asterisk may be used
	 for a range to match all possible
	 alpha, beta, and
	 RC versions. For instance,
	 <ge>2.*</ge><lt>3.*</lt>
	 will selectively match every 2.x
	 version while
	 <ge>2.0</ge><lt>3.0</lt>
	 will not since the latter misses 2.r3
	 and matches 3.b.
The above example specifies that affected are versions
	 from 1.6 to 1.9
	 inclusive, versions 2.x before
	 2.4_1, and version
	 3.0b1.

	[image: 5]
	Several related package groups (essentially, ports)
	 can be listed in the <affected>
	 section. This can be used if several software products
	 (say FooBar, FreeBar and OpenBar) grow from the same code
	 base and still share its bugs and vulnerabilities. Note
	 the difference from listing multiple names within a single
	 <package> section.

	[image: 6]
	The version ranges have to allow for
	 PORTEPOCH and
	 PORTREVISION if applicable. Please
	 remember that according to the collation rules, a version
	 with a non-zero PORTEPOCH is greater
	 than any version without PORTEPOCH,
	 for example, 3.0,1 is greater than
	 3.1 or even than
	 8.9.

	[image: 7]
	This is a summary of the issue. XHTML is used in this
	 field. At least enclosing <p>
	 and </p> has to appear. More
	 complex mark-up may be used, but only for the sake of
	 accuracy and clarity: No eye candy please.

	[image: 8]
	This section contains references to relevant
	 documents. As many references as apply are
	 encouraged.

	[image: 9]
	This is a FreeBSD
	 security advisory.

	[image: 10]
	This is a FreeBSD
	 problem report.

	[image: 11]
	This is a
	 MITRE
	 CVE identifier.

	[image: 12]
	This is a SecurityFocus
	 Bug ID.

	[image: 13]
	This is a
	 US-CERT
	 security advisory.

	[image: 14]
	This is a
	 US-CERT
	 vulnerability note.

	[image: 15]
	This is a
	 US-CERT
	 Cyber Security Alert.

	[image: 16]
	This is a
	 US-CERT
	 Technical Cyber Security Alert.

	[image: 17]
	This is a URL to an archived posting in a mailing
	 list. The attribute msgid is optional
	 and may specify the message ID of the posting.

	[image: 18]
	This is a generic URL. Only it if none
	 of the other reference categories apply.

	[image: 19]
	This is the date when the issue was disclosed
	 (YYYY-MM-DD).

	[image: 20]
	This is the date when the entry was added
	 (YYYY-MM-DD).

	[image: 21]
	This is the date when any information in the entry was
	 last modified (YYYY-MM-DD).
	 New entries must not include this field. Add it when
	 editing an existing entry.

11.3.3. Testing Changes to the VuXML Database
This example describes a new entry for a vulnerability in
	the package dropbear that has been fixed in
	version dropbear-2013.59.
As a prerequisite, install a fresh version of
	security/vuxml port.
First, check whether there already is an entry for this
	vulnerability. If there were such an entry, it would match
	the previous version of the package,
	2013.58:
% pkg audit dropbear-2013.58
If there is none found, add a
	new entry for this vulnerability.
% cd ${PORTSDIR}/security/vuxml
% make newentry
Verify its syntax and formatting:
% make validate
注意:
At least one of these packages needs to be installed:
	 textproc/libxml2,
	 textproc/jade.

Verify that the <affected>
	section of the entry will match the correct packages:
% pkg audit -f ${PORTSDIR}/security/vuxml/vuln.xml dropbear-2013.58
Make sure that the entry produces no spurious matches in
	the output.
Now check whether the right package versions are matched
	by the entry:
% pkg audit -f ${PORTSDIR}/security/vuxml/vuln.xml dropbear-2013.58 dropbear-2013.59
dropbear-2012.58 is vulnerable:
dropbear -- exposure of sensitive information, DoS
CVE: CVE-2013-4434
CVE: CVE-2013-4421
WWW: http://portaudit.FreeBSD.org/8c9b48d1-3715-11e3-a624-00262d8b701d.html

1 problem(s) in the installed packages found.
The former version matches while the latter one
	does not.
章 12. Dos and Don'ts
12.1. 楔子
Here is a list of common dos and don'ts that are encountered
 during the porting process. Check the port against this list,
 but also check ports in the PR
	database that others have submitted. Submit any
 comments on ports as described in Bug
	Reports and General Commentary. Checking ports in the
 PR database will both make it faster for us to commit them, and
 prove that you know what you are doing.
12.2. WRKDIR
Do not write anything to files outside
 WRKDIR. WRKDIR is the
 only place that is guaranteed to be writable during the port
 build (see
	installing ports from a CDROM for an example of
 building ports from a read-only tree). The
 pkg-* files can
 be modified by redefining a
	variable rather than overwriting the file.
12.3. WRKDIRPREFIX
Make sure the port honors WRKDIRPREFIX.
 Most ports do not have to worry about this. In particular, when
 referring to a WRKDIR of another
 port, note that the correct location is
 WRKDIRPREFIXPORTSDIR/subdir/name/work
 not
 PORTSDIR/subdir/name/work
 or
 .CURDIR/../../subdir/name/work
 or some such.
Also, if defining WRKDIR,
 make sure to prepend
 ${WRKDIRPREFIX}${.CURDIR} in
 the front.
12.4. Differentiating Operating Systems and OS Versions
Some code needs modifications or
 conditional compilation based upon what version of FreeBSD Unix it
 is running under. The preferred way to tell FreeBSD versions apart
 are the __FreeBSD_version and
 __FreeBSD__ macros defined in sys/param.h.
 If this file is not included add the code,
#include <sys/param.h>
to the proper place in the .c
	file.
__FreeBSD__ is defined in all versions
	of FreeBSD as their major version number. For example, in FreeBSD
	9.x, __FreeBSD__ is defined to be
	9.
#if __FreeBSD__ >= 9
if __FreeBSD_version >= 901000
	 /* 9.1+ release specific code here */
endif
#endif
A complete list of __FreeBSD_version
	values is available in 章 16, __FreeBSD_version
 Values.
12.5. Writing Something After
 bsd.port.mk
Do not write anything after the
 .include <bsd.port.mk> line. It
 usually can be avoided by including
 bsd.port.pre.mk somewhere in the middle of
 the Makefile and
 bsd.port.post.mk at the end.
重要:
Include either the
	bsd.port.pre.mk/bsd.port.post.mk
	pair or bsd.port.mk only; do not mix
	these two usages.

bsd.port.pre.mk only defines a few
 variables, which can be used in tests in the
 Makefile,
 bsd.port.post.mk defines the rest.
Here are some important variables defined in
 bsd.port.pre.mk (this is not the complete
 list, please read bsd.port.mk for the
 complete list).
	Variable	描述
	ARCH	The architecture as returned by
	 uname -m (for example,
	 i386)
	OPSYS	The operating system type, as returned by
	 uname -s (for example,
	 FreeBSD)
	OSREL	The release version of the operating system
	 (for example, 2.1.5 or
	 2.2.7)
	OSVERSION	The numeric version of the operating system; the
	 same as __FreeBSD_version.
	LOCALBASE	The base of the “local” tree (for
	 example, /usr/local)
	PREFIX	Where the port installs itself (see
	 more on
		PREFIX).

注意:
When MASTERDIR is needed, always define
	it before including
	bsd.port.pre.mk.

Here are some examples of things that can be added after
 bsd.port.pre.mk:
no need to compile lang/perl5 if perl5 is already in system
.if ${OSVERSION} > 300003
BROKEN=	perl is in system
.endif
Always use tab instead of spaces after
 BROKEN=.
12.6. 在 Wrapper Scripts 中使用 exec　敘述句
若某 port 為了執行其他程式而安裝了一個 shell script， 而該程式同時也是該 script 最後一個動作，那麼需要確定該 script 是用 exec 敘述句（statement），例如：
#!/bin/sh
exec %%LOCALBASE%%/bin/java -jar %%DATADIR%%/foo.jar "$@"
exec　敘述句以所指定的程式取代了該 shell 的程序。 若省略 exec ，那麼該 shell 程序 將會在程式執行中一直存在於記憶體，這無疑地浪費了系統資源。
12.7. Do Things Rationally
The Makefile should do things in a
 simple and reasonable manner. Making it a couple of lines
 shorter or more readable is always better. Examples include
 using a make .if construct instead of a shell
 if construct, not redefining
 do-extract if redefining
 EXTRACT* is enough, and using
 GNU_CONFIGURE instead of
 CONFIGURE_ARGS
	+= --prefix=${PREFIX}.
If a lot of new code is needed to do something, there may
 already be an implementation of it in
 bsd.port.mk. While hard to read, there are
 a great many seemingly-hard problems for which
 bsd.port.mk already provides a shorthand
 solution.
12.8. Respect Both CC and
 CXX
The port must respect both CC and
 CXX. What we mean by this is that
 the port must not set the values of these variables absolutely,
 overriding existing values; instead, it may append whatever
 values it needs to the existing values. This is so that build
 options that affect all ports can be set globally.
If the port does not respect these variables,
 please add
 NO_PACKAGE=ignores either cc or cxx to the
 Makefile.
Here is an example of a Makefile
 respecting both CC and
 CXX. Note the ?=:
CC?= gcc
CXX?= g++
Here is an example which respects neither
 CC nor CXX:
CC= gcc
CXX= g++
Both CC and CXX
 can be defined on FreeBSD systems in
 /etc/make.conf. The first example defines
 a value if it was not previously set in
 /etc/make.conf, preserving any system-wide
 definitions. The second example clobbers anything previously
 defined.
12.9. Respect CFLAGS
The port must respect CFLAGS.
 What we mean by this is that the port must not set
 the value of this variable absolutely, overriding the existing
 value. Instead, it may append whatever values it needs to the
 existing value. This is so that build options that affect all
 ports can be set globally.
If it does not, please add
 NO_PACKAGE=ignores cflags to the
 Makefile.
Here is an example of a Makefile
 respecting CFLAGS. Note the
 +=:
CFLAGS+= -Wall -Werror
Here is an example which does not respect
 CFLAGS:
CFLAGS= -Wall -Werror
CFLAGS is defined on
 FreeBSD systems in /etc/make.conf. The first
 example appends additional flags to
 CFLAGS, preserving any system-wide
 definitions. The second example clobbers anything previously
 defined.
Remove optimization flags from the third party
 Makefiles. The system
 CFLAGS contains system-wide optimization
 flags. An example from an unmodified
 Makefile:
CFLAGS= -O3 -funroll-loops -DHAVE_SOUND
Using system optimization flags, the
 Makefile would look similar to this
 example:
CFLAGS+= -DHAVE_SOUND
12.10. Feedback
Do send applicable changes and patches to the upstream
 maintainer for inclusion in the next release of the code.
 This makes updating to the next release that much easier.
12.11. README.html
README.html is not part of the port,
 but generated by make readme. Do not
 include this file in patches or commits.
注意:
If make readme fails, make sure that
	the default value of ECHO_MSG has not
	been modified by the port.

12.12. Marking a Port as Architecture Neutral
Ports that do not have any architecture-dependent files
 or requirements are identified by setting
 NO_ARCH=yes.
12.13. Marking a Port Not Installable with
 BROKEN, FORBIDDEN, or
 IGNORE
In certain cases, users must be prevented from installing
 a port. There are several variables that can be used in a
 port's Makefile to tell the user that the
 port cannot be installed. The value of
 these make variables will be the
 reason that is shown to users for why the port refuses to
 install itself. Please use the correct make
 variable. Each variable conveys radically different
 meanings, both to users and to automated systems that depend on
 Makefiles, such as
 the ports build cluster,
 FreshPorts, and
 portsmon.
12.13.1. 變數
	BROKEN is reserved for ports that
	 currently do not compile, install, deinstall, or run
	 correctly. Use it for ports where the problem
	 is believed to be temporary.
If instructed, the build cluster will still attempt
	 to try to build them to see if the underlying problem has
	 been resolved. (However, in general, the cluster is run
	 without this.)
For instance, use BROKEN when a
	 port:
	does not compile

	fails its configuration or installation
		process

	installs files outside of
		${PREFIX}

	does not remove all its files cleanly upon
		deinstall (however, it may be acceptable, and
		desirable, for the port to leave user-modified files
		behind)

	has runtime issues on systems where it is
		supposed to run fine.

	FORBIDDEN is used for ports that
	 contain a security vulnerability or induce grave concern
	 regarding the security of a FreeBSD system with a given port
	 installed (for example, a reputably insecure program or a
	 program that provides easily exploitable services). Mark
	 ports as FORBIDDEN as soon as a
	 particular piece of software has a vulnerability and there
	 is no released upgrade. Ideally upgrade ports as soon as
	 possible when a security vulnerability is discovered so as
	 to reduce the number of vulnerable FreeBSD hosts (we like
	 being known for being secure), however sometimes there is
	 a noticeable time gap between disclosure of a
	 vulnerability and an updated release of the vulnerable
	 software. Do not mark a port FORBIDDEN
	 for any reason other than security.

	IGNORE is reserved for ports that
	 must not be built for some other reason. Use it
	 for ports where the problem is believed to be
	 structural. The build cluster will not, under any
	 circumstances, build ports marked as
	 IGNORE. For instance, use
	 IGNORE when a port:
	does not work on the installed version of
		FreeBSD

	has a distfile which may not be automatically
		fetched due to licensing restrictions

	does not work with some other currently
		installed port (for instance, the port depends on
		www/apache20 but
		www/apache22 is
		installed)

注意:
If a port would conflict with a currently
	 installed port (for example, if they install a file in
	 the same place that performs a different function),
	 use
		CONFLICTS instead.
	 CONFLICTS will set
	 IGNORE by itself.

	To mark a port as IGNOREd
	 only on certain architectures, there are two other
	 convenience variables that will automatically set
	 IGNORE:
	 ONLY_FOR_ARCHS and
	 NOT_FOR_ARCHS. Examples:
ONLY_FOR_ARCHS=	i386 amd64
NOT_FOR_ARCHS=	ia64 sparc64
A custom IGNORE message can be
	 set using ONLY_FOR_ARCHS_REASON and
	 NOT_FOR_ARCHS_REASON. Per
	 architecture entries are possible with
	 ONLY_FOR_ARCHS_REASON_ARCH
	 and
	 NOT_FOR_ARCHS_REASON_ARCH.

	If a port fetches i386 binaries and installs them,
	 set IA32_BINARY_PORT. If this variable
	 is set, /usr/lib32 must be present
	 for IA32 versions of libraries and the kernel must support
	 IA32 compatibility. If one of these two
	 dependencies is not satisfied, IGNORE
	 will be set automatically.

12.13.2. Implementation Notes
Do not quote the values of BROKEN,
	IGNORE, and related variables. Due to the
	way the information is shown to the user, the wording of
	messages for each variable differ:
BROKEN=	fails to link with base -lcrypto
IGNORE=	unsupported on recent versions
resulting in this output from
	make describe:
===> foobar-0.1 is marked as broken: fails to link with base -lcrypto.
===> foobar-0.1 is unsupported on recent versions.
12.14. Marking a Port for Removal with
 DEPRECATED or
 EXPIRATION_DATE
Do remember that BROKEN and
 FORBIDDEN are to be used as a temporary
 resort if a port is not working. Permanently broken ports
 will be removed from the tree entirely.
When it makes sense to do so, users can be warned about
 a pending port removal with DEPRECATED and
 EXPIRATION_DATE. The former is a
 string stating why the port is scheduled for removal; the latter
 is a string in ISO 8601 format (YYYY-MM-DD). Both will be shown
 to the user.
It is possible to set DEPRECATED
 without an EXPIRATION_DATE (for instance,
 recommending a newer version of the port), but the converse
 does not make any sense.
There is no set policy on how much notice to give.
 Current practice seems to be one month for security-related
 issues and two months for build issues. This also gives any
 interested committers a little time to fix the problems.
12.15. Avoid Use of the .error
 Construct
The correct way for a Makefile to
 signal that the port cannot be installed due to some external
 factor (for instance, the user has specified an illegal
 combination of build options) is to set a non-blank value to
 IGNORE. This value will be formatted and
 shown to the user by make install.
It is a common mistake to use .error
 for this purpose. The problem with this is that many automated
 tools that work with the ports tree will fail in this situation.
 The most common occurrence of this is seen when trying to build
 /usr/ports/INDEX (see
 節 9.1, “Running make describe”). However, even more trivial
 commands such as make maintainer also fail in
 this scenario. This is not acceptable.
範例 12.1. How to Avoid Using .error
The first of the
	next two Makefile snippets will cause
	make index to fail, while the second one
	will not:
.error "option is not supported"
IGNORE=option is not supported

12.16. sysctl　的使用
sysctl　除了在 targets 之外，都不鼓勵使用。 這是因為任何 makevar 的評估都有可能會使得程序執行速度變慢，例如在 make index 的過程中，就會需要用到 sysctl。
若要使用 sysctl(8) 則必須透過 SYSCTL 此一變數才可，因為這樣才會包含完整路徑， 同時也可以隨時因應使用者需求而替換為其他路徑。
12.17. Rerolling Distfiles
Sometimes the authors of software change the content of
 released distfiles without changing the file's name.
 Verify that the changes are official and have been performed
 by the author. It has happened in the past that the distfile
 was silently altered on the download servers with the intent to
 cause harm or compromise end user security.
Put the old distfile aside, download the new one, unpack
 them and compare the content with diff(1). If there is
 nothing suspicious, update
 distinfo. Be sure to summarize the
 differences in the PR or commit log, so that other people know
 that nothing bad has
 happened.
Contact the authors of the software
 and confirm the changes with them.
12.18. Avoiding Linuxisms
Do not use /proc if there are any
 other ways of getting the information. For example,
 setprogname(argv[0]) in
 main() and then getprogname(3)
 to know the executable name>.
Do not rely on behavior that is undocumented by
 POSIX.
Do not record timestamps in the critical path of the
 application if it also works without. Getting timestamps may be
 slow, depending on the accuracy of timestamps in the
 OS. If timestamps are really needed,
 determine how precise they have to be and use an
 API which is documented to just deliver the
 needed precision.
A number of simple syscalls (for example
 gettimeofday(2), getpid(2)) are much faster on Linux®
 than on any other operating system due to caching and the
 vsyscall performance optimizations. Do not rely on them being
 cheap in performance-critical applications. In general, try
 hard to avoid syscalls if possible.
Do not rely on Linux®-specific socket behaviour. In
 particular, default socket buffer sizes are different (call
 setsockopt(2) with SO_SNDBUF and
 SO_RCVBUF, and while Linux®'s send(2)
 blocks when the socket buffer is full, FreeBSD's will fail and
 set ENOBUFS in errno.
If relying on non-standard behaviour is required,
 encapsulate it properly into a generic API,
 do a check for the behaviour in the configure stage, and stop
 if it is missing.
Check the
 man
	pages to see if the function used is a
 POSIX interface (in the
 “STANDARDS” section of the man page).
Do not assume that /bin/sh is
 bash. Ensure that a command line
 passed to system(3) will work with a
 POSIX compliant shell.
A list of common bashisms is
 available here.
Check that headers are included in the
 POSIX or man page recommended way. For
 example, sys/types.h is often forgotten,
 which is not as much of a problem for Linux® as it is for
 FreeBSD.
12.19. Miscellanea
Always double-check pkg-descr and
 pkg-plist.
 If reviewing a port and a better wording can be achieved,
 do so.
Do not copy more copies of the GNU General Public License
 into our system, please.
Please be careful to note any legal issues! Do not let us
 illegally distribute software!
章 13. A Sample Makefile
Here is a sample Makefile that can be
 used to create a new port. Make sure to remove all the extra
 comments (ones between brackets).
The format shown is the recommended one for ordering
 variables, empty lines between sections, and so on. This format is
 designed so that the most important information is easy to locate.
 We recommend using
 portlint to check the
 Makefile.
[the header...just to make it easier for us to identify the ports.]
Created by: Satoshi Asami <asami@FreeBSD.org>
[The optional Created by: line names the person who originally
created the port. Note that the “:” is followed by a space
and not a tab character.
If this line is present, future maintainers must
not change or remove it except at the original author's request.]

$FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $
[^^^^^^^^^ This will be automatically replaced with RCS ID string by SVN
when it is committed to our repository. If upgrading a port, do not alter
this line back to "$FreeBSD: head/zh_TW.UTF-8/books/porters-handbook/book.xml 48496 2016-03-29 01:37:53Z kevlo $". SVN deals with it automatically.]

[section to describe the port itself and the master site - PORTNAME
 and PORTVERSION are always first, followed by CATEGORIES,
 and then MASTER_SITES, which can be followed by MASTER_SITE_SUBDIR.
 PKGNAMEPREFIX and PKGNAMESUFFIX, if needed, will be after that.
 Then comes DISTNAME, EXTRACT_SUFX and/or DISTFILES, and then
 EXTRACT_ONLY, as necessary.]
PORTNAME=	xdvi
PORTVERSION=	18.2
CATEGORIES=	print
[do not forget the trailing slash ("/")!
 if not using MASTER_SITE_* macros]
MASTER_SITES=	${MASTER_SITE_XCONTRIB}
MASTER_SITE_SUBDIR=	applications
PKGNAMEPREFIX=	ja-
DISTNAME=	xdvi-pl18
[set this if the source is not in the standard ".tar.gz" form]
EXTRACT_SUFX=	.tar.Z

[section for distributed patches -- can be empty]
PATCH_SITES=	ftp://ftp.sra.co.jp/pub/X11/japanese/
PATCHFILES=	xdvi-18.patch1.gz xdvi-18.patch2.gz

[maintainer; *mandatory*! This is the person who is volunteering to
 handle port updates, build breakages, and to whom a users can direct
 questions and bug reports. To keep the quality of the Ports Collection
 as high as possible, we no longer accept new ports that are assigned to
 "ports@FreeBSD.org".]
MAINTAINER=	asami@FreeBSD.org
COMMENT=	DVI Previewer for the X Window System

[dependencies -- can be empty]
RUN_DEPENDS=	gs:${PORTSDIR}/print/ghostscript

[this section is for other standard bsd.port.mk variables that do not
 belong to any of the above]
[If it asks questions during configure, build, install...]
IS_INTERACTIVE=	yes
[If it extracts to a directory other than ${DISTNAME}...]
WRKSRC=		${WRKDIR}/xdvi-new
[If the distributed patches were not made relative to ${WRKSRC},
 this may need to be tweaked]
PATCH_DIST_STRIP=	-p1
[If it requires a "configure" script generated by GNU autoconf to be run]
GNU_CONFIGURE=	yes
[If it requires GNU make, not /usr/bin/make, to build...]
USES= gmake
[If it is an X application and requires "xmkmf -a" to be run...]
USES= imake
[et cetera.]

[non-standard variables to be used in the rules below]
MY_FAVORITE_RESPONSE=	"yeah, right"

[then the special rules, in the order they are called]
pre-fetch:
	i go fetch something, yeah

post-patch:
	i need to do something after patch, great

pre-install:
	and then some more stuff before installing, wow

[and then the epilogue]

.include <bsd.port.mk>
章 14. Keeping Up
The FreeBSD Ports Collection is constantly changing. Here is
 some information on how to keep up.
14.1. FreshPorts
One of the easiest ways to learn about updates that have
 already been committed is by subscribing to FreshPorts.
 Multiple ports can be monitored. Maintainers are
 strongly encouraged to subscribe, because they will receive
 notification of not only their own changes, but also any changes
 that any other FreeBSD committer has made. (These are often
 necessary to keep up with changes in the underlying ports
 framework—although it would be most polite to receive an
 advance heads-up from those committing such changes, sometimes
 this is overlooked or impractical. Also, in some
 cases, the changes are very minor in nature. We expect everyone
 to use their best judgement in these cases.)
To use FreshPorts, an account is required. Those with
 registered email addresses at @FreeBSD.org
 will see the opt-in link on the right-hand side of the web
 pages. Those who already have a FreshPorts account but are not
 using a @FreeBSD.org email address can change
 the email to @FreeBSD.org, subscribe, then
 change it back again.
FreshPorts also has a sanity test feature which
 automatically tests each commit to the FreeBSD ports tree. If
 subscribed to this service, a committer will receive
 notifications of any errors which FreshPorts detects during
 sanity testing of their commits.
14.2. The Web Interface to the Source Repository
It is possible to browse the files in the source
 repository by using a web interface. Changes that affect the
 entire port system are now documented in the CHANGES
 file. Changes that affect individual ports are now documented
 in the UPDATING
 file. However, the definitive answer to any question is
 undoubtedly to read the source code of bsd.port.mk,
 and associated files.
14.3. The FreeBSD Ports Mailing List
As a ports maintainer, consider subscribing to
 FreeBSD ports mailing list. Important changes to the way ports work will be
 announced there, and then committed to
 CHANGES.
If the volume of messages on this mailing list is too high,
 consider following FreeBSD ports announce mailing list which contains only
 announcements.
14.4. The FreeBSD Port Building Cluster
One of the least-publicized strengths of FreeBSD is that
 an entire cluster of machines is dedicated to continually
 building the Ports Collection, for each of the major OS releases
 and for each Tier-1 architecture.
Individual ports are built unless they are specifically
 marked with IGNORE. Ports that are marked
 with BROKEN will still be attempted, to see
 if the underlying problem has been resolved. (This is done by
 passing TRYBROKEN to the port's
 Makefile.)
14.5. Portscout: the FreeBSD Ports Distfile Scanner
The build cluster is dedicated to building the latest
 release of each port with distfiles that have already been
 fetched. However, as the Internet continually changes,
 distfiles can quickly go missing. Portscout,
 the FreeBSD Ports distfile scanner, attempts to query every
 download site for every port to find out if each distfile is
 still available. Portscout can
 generate HTML reports and send emails about
 newly available ports to those who request them. Unless not
 otherwise subscribed, maintainers are asked to check
 periodically for changes, either by hand or using the
 RSS feed.
Portscout's first page gives
 the email address of the port maintainer, the number of ports
 the maintainer is responsible for, the number of those ports
 with new distfiles, and the percentage of those ports that are
 out-of-date. The search function allows for searching by email
 address for a specific maintainer, and for selecting whether
 only out-of-date ports are shown.
Upon clicking on a maintainer's email address, a list of
 all of their ports is displayed, along with port category,
 current version number, whether or not there is a new version,
 when the port was last updated, and finally when it was last
 checked. A search function on this page allows the user to
 search for a specific port.
Clicking on a port name in the list displays the FreshPorts port
 information.
14.6. The FreeBSD Ports Monitoring System
Another handy resource is the FreeBSD Ports
	Monitoring System (also known as
 portsmon). This system comprises a database
 that processes information from several sources and allows it to
 be browsed via a web interface. Currently, the ports Problem
 Reports (PRs), the error logs from the build cluster, and
 individual files from the ports collection are used. In the
 future, this will be expanded to include the distfile survey, as
 well as other sources.
To get started, use the Overview
	of One Port search page to find all the information
 about a port.
This is the only resource available that
 maps PR entries to portnames. PR submitters do not
 always include the portname in their Synopsis, although we would
 prefer that they did. So, portsmon is a
 good place to find out whether an existing
 port has any PRs filed against it, any build errors, or
 if a new port the porter is considering
 creating has already been submitted.
章 15. Using USES
 Macros
15.1. An Introduction to USES
USES macros make it easy to declare
 requirements and settings for a port. They can add
 dependencies, change building behavior, add metadata to
 packages, and so on, all by selecting simple, preset
 values..
Each section in this chapter describes a possible value for
 USES, along with its possible arguments.
 Arguments are appeneded to the value after a colon
 (:). Multiple arguments are separated by
 commas (,).
範例 15.1. Using Multiple Values
USES=	bison perl

範例 15.2. Adding an Argument
USES=	gmake:lite

範例 15.3. Adding Multiple Arguments
USES=	drupal:7,theme

範例 15.4. Mixing it All Together
USES=	pgsql:9.3+ cpe python:2.7,build

15.2. ada
Possible arguments: (none), 47,
 49, 5
Depends on an Ada-capable
 compiler, and sets CC accordingly. Defaults
 to a gcc 4.9 based compiler, use
 :47 to use the older
 gcc 4.7 based one and
 :5 to use the newer
 gcc 5 based one.
15.3. autoreconf
Possible arguments: (none), build
Runs autoreconf. It encapsulates the
 aclocal, autoconf,
 autoheader, automake,
 autopoint, and libtoolize
 commands. Each command applies to
 ${CONFIGURE_WRKSRC}/configure.ac or its old
 name, ${CONFIGURE_WRKSRC}/configure.in. If
 configure.ac defines subdirectories with
 their own configure.ac using
 AC_CONFIG_SUBDIRS,
 autoreconf will recursively update those as
 well. The :build argument only adds build
 time dependencies on those tools but does not run
 autoreconf.
15.4. blaslapack
Possible arguments: (none), atlas,
 netlib (default),
 gotoblas, openblas
Adds dependencies on Blas / Lapack libraries.
15.5. bison
Possible arguments: (none), build,
 run, both
Uses devel/bison By default,
 with no arguments or with the build argument,
 it implies bison is a build-time dependency,
 run implies a run-time dependency, and
 both implies both run-time and build-time
 dependencies.
15.6. charsetfix
Possible arguments: (none)
Prevents the port from installing
 charset.alias. This must be installed only
 by converters/libiconv.
 CHARSETFIX_MAKEFILEIN can be set to a path
 relative to WRKSRC if
 charset.alias is not installed by
 ${WRKSRC}/Makefile.in.
15.7. cmake
Possible arguments: (none), outsource,
 run
Uses CMake for configuring and
 building. With the outsource argument, an
 out-of-source build will be performed. With the
 run argument, a run-time dependency is
 registered. For more information see 節 6.5.4, “Using cmake”.
15.8. compiler
Possible arguments: (none), c++14-lang,
 c++11-lang, gcc-c++11-lib,
 c++11-lib, c++0x,
 c11, openmp,
 nestedfct, features
Determines which compiler to use based on any given wishes.
 Use c++14-lang if the port needs a
 C++14-capable compiler, gcc-c++11-lib if the
 port needs the g++ compiler with a C++11
 library, or c++11-lib if the port needs
 a C++11-ready standard library. If the port needs a compiler
 understanding C++11, C++0X, C11, OpenMP, or nested functions,
 the corresponding parameters can be used. Use
 features to request a list of features
 supported by the default compiler. After including
 bsd.port.pre.mk the port can inspect the
 results using these variables:
	COMPILER_TYPE: the default compiler
	 on the system, either gcc or clang

	ALT_COMPILER_TYPE: the alternative
	 compiler on the system, either gcc or clang. Only set if
	 two compilers are present in the base system.

	COMPILER_VERSION: the first two
	 digits of the version of the default compiler.

	ALT_COMPILER_VERSION: the first two
	 digits of the version of the alternative compiler, if
	 present.

	CHOSEN_COMPILER_TYPE: the chosen
	 compiler, either gcc or clang

	COMPILER_FEATURES: the features
	 supported by the default compiler. It currently lists the
	 C++ library.

15.9. cpe
Possible arguments: (none)
Include Common Platform Enumeration
 (CPE) information in package manifest as a
 CPE 2.3 formatted string. See the CPE
	specification for details. To add
 CPE information to a port, follow these
 steps:
	Search for the official CPE para for the software
	 product either by using the NVD's CPE
	 search engine or in the official
	 CPE dictionary (warning, very
	 large XML file). Do not ever
	 make up CPE data.

	Add cpe to USES
	 and compare the result of make -V CPE_STR
	 to the CPE dictionary para. Continue one
	 step at a time until make -V CPE_STR is
	 correct.

	If the product name (second field, defaults to
	 PORTNAME) is incorrect, define
	 CPE_PRODUCT.

	If the vendor name (first field, defaults to
	 CPE_PRODUCT) is incorrect, define
	 CPE_VENDOR.

	If the version field (third field, defaults to
	 PORTVERSION) is incorrect, define
	 CPE_VERSION.

	If the update field (fourth field, defaults to empty) is
	 incorrect, define CPE_UPDATE.

	If it is still not correct, check
	 Mk/Uses/cpe.mk for additional details,
	 or contact the Ports Security Team <ports-secteam@FreeBSD.org>.

	Derive as much as possible of the CPE
	 name from existing variables such as
	 PORTNAME and
	 PORTVERSION. Use variable modifiers to
	 extract the relevant portions from these variables rather
	 than hardcoding the name.

	Always run make -V
	 CPE_STR and check the output before committing
	 anything that changes PORTNAME or
	 PORTVERSION or any other variable which
	 is used to derive CPE_STR.

15.10. cran
Possible arguments: (none),
 auto-plist
Uses the Comprehensive R Archive Network. Specify
 auto-plist to automatically generate
 pkg-plist.
15.11. desktop-file-utils
Possible arguments: (none)
Uses update-desktop-database from
 devel/desktop-file-utils. An
 extra post-install step will be run without interfering with any
 post-install steps already in the port
 Makefile. A line with @desktop-file-utils
 will be added to the plist.
15.12. desthack
Possible arguments: (none)
Changes the behavior of GNU configure to properly support
 DESTDIR in case the original software does
 not.
15.13. display
Possible arguments: (none),
 ARGS
Set up a virtual display environment. If the environment
 variable DISPLAY is not set, then
 Xvfb is added as a build dependency,
 and CONFIGURE_ENV is extended with the port
 number of the currently running instance of
 Xvfb. The
 ARGS
 parameter defaults to install and controls
 the phase around which to start and stop the virtual
 display.
15.14. dos2unix
Possible arguments: (none)
The port has files with line endings in
 DOS format which need to be converted. Three
 variables can be set to control which files will be converted.
 The default is to convert all files,
 including binaries. See 節 4.4.3, “Simple Automatic Replacements” for
 examples.
	DOS2UNIX_REGEX: match file names
	 based on a regular expression.

	DOS2UNIX_FILES: match literal file
	 names.

	DOS2UNIX_GLOB: match file names based
	 on a glob pattern.

15.15. drupal
Possible arguments: 6,
 7, module,
 theme
Automate installation of a port that is a
 Drupal theme or module. Use with the
 version of Drupal that the port is expecting. For example,
 USES=drupal:6,module says that this port
 creates a Drupal 6 module. A Drupal 7 theme can be specified
 with USES=drupal:7,theme.
15.16. execinfo
Possible arguments: (none)
Add a library dependency on devel/libexecinfo if
 libexecinfo.so is not present in the base
 system.
15.17. fakeroot
Possible arguments: (none)
Changes some default behaviour of build systems to allow
 installing as a user. See http://fakeroot.alioth.debian.org/for more
 information on fakeroot.
15.18. fam
Possible arguments: (none), fam,
 gamin
Uses a File Alteration Monitor as a library dependency,
 either devel/fam or devel/gamin. End users can set
 WITH_FAM_SYSTEM to specify their preference.
15.19. fmake
Possible arguments: (none)
Uses devel/fmake as a
 build-time dependency.
15.20. fonts
Possible arguments: (none), fc,
 fcfontsdir (default),
 fontsdir, none
Adds a runtime dependency on tools needed to register fonts.
 Depending on the argument, add a @fc ${FONTSDIR}
 line, @fcfontsdir
	${FONTSDIR} line, @fontsdir
	${FONTSDIR} line, or no line if the argument is
 none, to the plist.
 FONTSDIR defaults to
 ${PREFIX}/share/fonts/${FONTNAME} and
 FONTNAME to ${PORTNAME}.
 Add FONTSDIR to PLIST_SUB
 and SUB_LIST
15.21. fortran
Possible arguments: gcc (default),
 ifort
Uses the Fortran compiler from either GNU or Intel.
15.22. fuse
Possible arguments: (none)
The port will depend on the FUSE library and handle the
 dependency on the kernel module depending on the version of
 FreeBSD.
15.23. gecko
Possible arguments: libxul (default),
 firefox, seamonkey,
 thunderbird, build,
 XY,
 XY+
Add a dependency on different
 gecko based applications. If
 libxul is used, it is the only argument
 allowed. When the argument is not libxul,
 the firefox, seamonkey, or
 thunderbird arguments can be used, along with
 optional build and
 XY/XY+
 version arguments.
15.24. gettext
Possible arguments: (none)
Deprecated. Will include both gettext-runtime
 and gettext-tools.
15.25. gettext-runtime
Possible arguments: (none), lib
 (default), build,
 run
Uses devel/gettext-runtime.
 By default, with no arguments or with the lib
 argument, implies a library dependency on
 libintl.so. build and
 run implies, respectively a build-time and a
 run-time dependency on gettext.
15.26. gettext-tools
Possible arguments: (none), build
 (default), run
Uses devel/gettext-tools. By
 default, with no argument, or with the build
 argument, a build time dependency on msgfmt
 is registered. With the run argument, a
 run-time dependency is registered.
15.27. ghostscript
Possible arguments: X,
 build, run,
 nox11
A specific version X can be used.
 Possible versions are 7,
 8, 9 (default), and
 agpl. nox11 indicates
 that the -nox11 version of the port is
 required. build and run
 add build- and run-time dependencies on
 Ghostscript. The default is both
 build- and run-time dependencies.
15.28. gmake
Possible arguments: (none), lite
Uses devel/gmake, or devel/gmake-lite if the
 lite argument is used, as a build-time
 dependency and sets up the environment to use
 gmake as the default make
 for the build.
15.29. gperf
Possible arguments: (none)
Add a buildtime dependency on devel/gperf if gperf
 is not present in the base system.
15.30. gssapi
Possible arguments: (none), base
 (default), heimdal, mit,
 flags, bootstrap
Handle dependencies needed by consumers of the
 GSS-API. Only libraries that provide the
 Kerberos mechanism are available. By
 default, or set to base, the
 GSS-API library from the base system is used.
 Can also be set to heimdal to use security/heimdal, or
 mit to use security/krb5.
When the local Kerberos
 installation is not in LOCALBASE, set
 HEIMDAL_HOME (for heimdal)
 or KRB5_HOME (for krb5) to
 the location of the Kerberos
 installation.
These variables are exported for the ports to use:
	GSSAPIBASEDIR

	GSSAPICPPFLAGS

	GSSAPIINCDIR

	GSSAPILDFLAGS

	GSSAPILIBDIR

	GSSAPILIBS

	GSSAPI_CONFIGURE_ARGS

The flags option can be given alongside
 base, heimdal, or
 mit to automatically add
 GSSAPICPPFLAGS,
 GSSAPILDFLAGS, and
 GSSAPILIBS to CFLAGS,
 LDFLAGS, and LDADD,
 respectively. For example, use
 base,flags.
The bootstrap option is a special prefix
 only for use by security/krb5 and
 security/heimdal. For example,
 use bootstrap,mit.
範例 15.5. Typical Use
OPTIONS_SINGLE=	GSSAPI
OPTIONS_SINGLE_GSSAPI=	GSSAPI_BASE GSSAPI_HEIMDAL GSSAPI_MIT GSSAPI_NONE

GSSAPI_BASE_USES=	gssapi
GSSAPI_BASE_CONFIGURE_ON=	--with-gssapi=${GSSAPIBASEDIR} ${GSSAPI_CONFIGURE_ARGS}
GSSAPI_HEIMDAL_USES=	gssapi:heimdal
GSSAPI_HEIMDAL_CONFIGURE_ON=	--with-gssapi=${GSSAPIBASEDIR} ${GSSAPI_CONFIGURE_ARGS}
GSSAPI_MIT_USES=	gssapi:mit
GSSAPI_MIT_CONFIGURE_ON=	--with-gssapi=${GSSAPIBASEDIR} ${GSSAPI_CONFIGURE_ARGS}
GSSAPI_NONE_CONFIGURE_ON=	--without-gssapi

15.31. horde
Possible arguments: (none)
Add buildtime and runtime dependencies on devel/pear-channel-horde. Other
 Horde dependencies can be added
 with USE_HORDE_BUILD and
 USE_HORDE_RUN. See 節 6.15.4.1, “Horde Modules” for more information.
15.32. iconv
Possible arguments: (none), lib,
 build,
 patch, translit,
 wchar_t
Uses iconv functions, either from the
 port converters/libiconv as a
 build-time and run-time dependency, or from the base system on
 10-CURRENT after a native iconv was committed
 in 254273. By default, with no arguments
 or with the lib argument, implies
 iconv with build-time and run-time
 dependencies. build implies a build-time
 dependency, and patch implies a patch-time
 dependency. If the port uses the WCHAR_T or
 //TRANSLIT iconv extensions, add the relevant
 arguments so that the correct iconv is used. For more
 information see 節 6.23, “使用 iconv”.
15.33. imake
Possible arguments: (none), env,
 notall, noman
Add devel/imake as a
 build-time dependency and run xmkmf -a during
 the configure stage. If the
 env argument is given, the
 configure target is not set. If the
 -a flag is a problem for the port, add the
 notall argument. If xmkmf
 does not generate a install.man
 target, add the noman argument.
15.34. kmod
Possible arguments: (none)
Fills in the boilerplate for kernel module ports,
 currently:
	Add kld to
	 CATEGORIES.

	Set SSP_UNSAFE.

	Set IGNORE if the kernel sources are
	 not found in SRC_BASE.

	Define KMODDIR to
	 /boot/modules by default, add it to
	 PLIST_SUB and
	 MAKE_ENV, and create it upon
	 installation. If KMODDIR is set to
	 /boot/kernel, it will be rewritten to
	 /boot/modules. This prevents breaking
	 packages when upgrading the kernel due to
	 /boot/kernel being renamed to
	 /boot/kernel.old in the process.

	Handle cross-referencing kernel modules upon
	 installation and deinstallation, using @kld.

15.35. lha
Possible arguments: (none)
Set EXTRACT_SUFX to
 .lzh
15.36. libarchive
Possible arguments: (none)
Registers a dependency on archivers/libarchive. Any ports
 depending on libarchive must include
 USES=libarchive.
15.37. libedit
Possible arguments: (none)
Registers a dependency on devel/libedit. Any ports depending on
 libedit must include
 USES=libedit.
15.38. libtool
Possible arguments: (none), keepla,
 build
Patches libtool scripts. This must be
 added to all ports that use libtool. The
 keepla argument can be used to keep
 .la files. Some ports do not ship with
 their own copy of libtool and need a build time dependency on
 devel/libtool, use the
 :build argument to add such
 dependency.
15.39. localbase
Possible arguments: (none)
Ensures that libraries from dependencies in
 LOCALBASE are used instead of the ones from
 the base system. Ports that depend on libraries that are also
 present in the base system should use this. It is also used
 internally by a few other USES.
15.40. lua
Possible arguments: (none),
 XY+,
 XY,
 build, run
Adds a dependency on Lua. By
 default this is a library dependency, unless overridden by the
 build or run option. The
 default version is 5.2, unless set by the
 XY parameter (for
 example, 51 or
 52+).
15.41. makeinfo
Possible arguments: (none)
Add a build-time dependency on makeinfo
 if it is not present in the base system.
15.42. makeself
Possible arguments: (none)
Indicates that the distribution files are makeself archives
 and sets the appropriate dependencies.
15.43. metaport
Possible arguments: (none)
Sets the following variables to make it easier to create a
 metaport: MASTER_SITES,
 DISTFILES, EXTRACT_ONLY,
 NO_BUILD, NO_INSTALL,
 NO_MTREE, NO_ARCH.
15.44. mono
Possible arguments: (none)
Adds a dependency on the Mono
 (currently only C#) framework by setting the appropriate
 dependencies.
15.45. motif
Possible arguments: (none)
Uses x11-toolkits/open-motif
 as a library dependency. End users can set
 WANT_LESSTIF for the dependency to be on
 x11-toolkits/lesstif instead of
 x11-toolkits/open-motif.
15.46. ncurses
Possible arguments: (none), base,
 port
Uses ncurses, and causes some
 useful variables to be set.
15.47. ninja
Possible arguments: (none)
Uses ninja to build the port.
 End users can set NINJA_VERBOSE for verbose
 output.
15.48. objc
Possible arguments: (none)
Add objective C dependencies (compiler, runtime library) if
 the base system does not support it.
15.49. openal
Possible arguments: al,
 soft (default), si,
 alut
Uses OpenAL. The backend can be
 specified, with the software implementation as the default. The
 user can specify a preferred backend with
 WANT_OPENAL. Valid values for this knob are
 soft (default) and
 si.
15.50. pathfix
Possible arguments: (none)
Look for Makefile.in and
 configure in the port's associated sources
 and fix common paths to make sure they respect the FreeBSD
 hierarchy. If the port uses automake, set
 PATHFIX_MAKEFILEIN to
 Makefile.am if needed.
15.51. pear
Possible arguments: (none)
Adds a dependency on devel/pear. It will setup default
 behavior for software using the PHP
 Extension and Application Repository. See 節 6.15.4, “PEAR Modules” for more information.
15.52. perl5
Possible arguments: (none)
Depends on Perl. These variables
 can be set:
	PERL_VERSION: Full version of
	 Perl to use, or the default if
	 not set

	PERL_ARCH: Directory name of
	 architecture dependent libraries, defaults to
	 mach

	PERL_PORT: Name of the
	 Perl port to be installed, the
	 default is derived from
	 PERL_VERSION

	SITE_PERL: Directory name for site
	 specific Perl packages

	USE_PERL5: Phases in which to use
	 Perl, can be
	 extract, patch,
	 build, install, or
	 run. It can also be
	 configure, modbuild,
	 or modbuildtiny when
	 Makefile.PL,
	 Build.PL, or the Module::Build::Tiny
	 flavor of Build.PL is required. It
	 defaults to build run.

15.53. pgsql
Possible arguments: (none),
 X.Y,
 X.Y+,
 X.Y-
Provide support for PostgreSQL. Maintainer can set version
 required. Minimum and maximum versions can be specified; for
 example, 9.0-, 8.4+.
Add PostgreSQL component dependency, using
 WANT_PGSQL=component[:target]. for example,
 WANT_PGSQL=server:configure pltcl plperl For
 the full list use make -V
	_USE_PGSQL_DEP.
15.54. pkgconfig
Possible arguments: (none), build
 (default), run,
 both
Uses devel/pkgconf. With no
 arguments or with the build argument, it
 implies pkg-config as a build-time
 dependency. run implies a run-time
 dependency and both implies both run-time and
 build-time dependencies.
15.55. pure
Possible arguments: (none), ffi
Uses lang/pure. Largely used
 for building related pure ports.
 With the ffi argument, it implies devel/pure-ffi as a run-time
 dependency.
15.56. python
Possible arguments: (none),
 X.Y,
 X.Y+,
 -X.Y,
 X.Y-Z.A,
 build, run
Uses Python. A supported version
 or version range can be specified. If Python is only needed at
 build or run time, it can be set as a build or run dependency
 with build or run. See
 節 6.16, “使用 Python” for more information.
15.57. qmail
Possible arguments: (none), build,
 run, both,
 vars
Uses mail/qmail. With the
 build argument, it implies
 qmail as a build-time dependency.
 run implies a run-time dependency. Using no
 argument or the both argument implies both
 run-time and build-time dependencies. vars
 will only set QMAIL variables for the port to use.
15.58. qmake
Possible arguments: (none), norecursive,
 outsource
Uses QMake for configuring. For
 more information see 節 6.12.3, “使用 qmake”.
15.59. readline
Possible arguments: (none), port
Uses readline as a library
 dependency, and sets CPPFLAGS and
 LDFLAGS as necessary. If the
 port argument is used or if readline is not
 present in the base system, add a dependency on devel/readline
15.60. scons
Possible arguments: (none)
Provide support for the use of devel/scons
15.61. shared-mime-info
Possible arguments: (none)
Uses update-mime-database from
 misc/shared-mime-info. This uses
 will automatically add a post-install step in such a way that
 the port itself still can specify there own post-install step if
 needed. It also add an @shared-mime-info
 para to the plist.
15.62. shebangfix
Possible arguments: (none)
A lot of software uses incorrect locations for script
 interpreters, most notably /usr/bin/perl
 and /bin/bash. The shebagngfix macro fixes
 shebang lines in scripts listed in
 SHEBANG_FILES. The shebangfix macro is run
 from ${WRKSRC}, so it can contain paths that
 are relative to ${WRKSRC}. It can also deal
 with absolute paths if files outside of
 ${WRKSRC} require patching. For
 example:
USES=	shebangfix
SHEBANG_FILES=	scripts/foobar.pl scripts/*.sh
Currently
 Bash,
 Java, Ksh,
 Lua,
 Perl, PHP,
 Python,
 Ruby, Tcl,
 and Tk are supported by default. To
 support another interpreter, set
 SHEBANG_LANG,
 interp_OLD_CMD and
 interp_CMD. For
 example:
SHEBANG_LANG=	lua
lua_OLD_CMD=	/usr/bin/lua
lua_CMD=	${LOCALBASE}/bin/lua
interp_OLD_CMD
 will contain multiple values. Any entry with spaces must be
 quoted. For example, if it was not already defined, the
 Ksh entry could be defined as:
SHEBANG_LANG=	ksh
ksh_OLD_CMD=	"/usr/bin/env ksh" /bin/ksh /usr/bin/ksh
ksh_CMD=	${LOCALBASE}/bin/ksh
Some software uses strange locations for an interpreter.
 For example, an application might expect
 Python to be located in
 /opt/bin/python2.7. The strange path to be
 replaced can be declared in the port
 Makefile:
python_OLD_CMD=	/opt/bin/python2.7
注意:
The fixing of shebangs is done during the
	patch phase. If scripts are
	created with incorrect shebangs during the
	build phase, the build process (for
	examples, the configure script, or the
	Makefiles) must be patched to generate
	the right shebangs. Correct paths for supported interpreters
	are available in
	interp_CMD.

15.63. tar
Possible arguments: (none), Z,
 bz2, bzip2,
 lzma, tbz,
 tbz2,
 tgz, txz,
 xz
Set EXTRACT_SUFX to
 .tar, .tar.Z,
 .tar.bz2, .tar.bz2,
 .tar.lzma, .tbz,
 .tbz2,
 .tgz, .txz or
 .tar.xz respectively.
15.64. tcl
Possible arguments: PORT
Add a dependency on Tcl. The
 PORT parameter can be either
 tcl or tk. Either a
 version or wrapper dependency can be appended using
 PORT:version or
 PORT:wrapper. The version can be empty, one
 or more exact version numbers (currently 84,
 85, or 86), or a minimal
 version number (currently 84+,
 85+ or 86+). A build- or
 run-time only dependency can be specified using
 PORT,build or PORT,run.
 After including bsd.port.pre.mk the port
 can inspect the results using these variables:
	TCL_VER: chosen major.minor version
	 of Tcl

	TCLSH: full path of the
	 Tcl interpreter

	TCL_LIBDIR: path of the
	 Tcl libraries

	TCL_INCLUDEDIR: path of the
	 Tcl C header files

	TK_VER: chosen major.minor version of
	 Tk

	WISH: full path of the
	 Tk interpreter

	TK_LIBDIR: path of the
	 Tk libraries

	TK_INCLUDEDIR: path of the
	 Tk C header files

15.65. terminfo
Possible arguments: (none)
Adds @terminfo
 to the plist. Use when the port installs
 *.terminfo files
 in ${PREFIX}/share/misc.
15.66. tk
Same as arguments for tcl
Small wrapper when using both Tcl
 and Tk. The same variables are
 returned as when using Tcl.
15.67. twisted
Possible arguments: (none), ARGS
Add a dependency on twistedCore.
 The list of required components can be specified as a value of
 this variable. ARGS can be one of:
	build: add
	 twistedCore or any specified
	 component as build dependency.

	run: add
	 twistedCore or any specified
	 component as run dependency.

Besides build and run,
 one or more other supported twisted
 components can be specified. Supported values are listed in
 Uses/twisted.mk.
15.68. uidfix
Possible arguments: (none)
Changes some default behavior (mostly variables) of
 the build system to allow installing this port as a normal
 user. Try this in the port before adding
 NEED_ROOT=yes
15.69. uniquefiles
Possible arguments: (none), dirs
Make files or directories 'unique', by adding a prefix or
 suffix. If the dirs argument is used, the
 port needs a prefix (a only a prefix) based on
 UNIQUE_PREFIX for standard directories
 DOCSDIR, EXAMPLESDIR,
 DATADIR, WWWDIR,
 ETCDIR. These variables are available for
 ports:
	UNIQUE_PREFIX: The prefix to be used
	 for directories and files. Default:
	 ${PKGNAMEPREFIX}.

	UNIQUE_PREFIX_FILES: A list of files
	 that need to be prefixed. Default: empty.

	UNIQUE_SUFFIX: The suffix to be used
	 for files. Default:
	 ${PKGNAMESUFFIX}.

	UNIQUE_SUFFIX_FILES: A list of files
	 that need to be suffixed. Default: empty.

15.70. webplugin
Possible arguments: (none), ARGS
Automatically create and remove symbolic links for each
 application that supports the webplugin framework.
 ARGS can be one of:
	gecko: support plug-ins based on
	 Gecko

	native: support plug-ins for Gecko,
	 Opera, and WebKit-GTK

	linux: support Linux plug-ins

	all (default, implicit): support all
	 plug-in types

	(individual entries): support only the browsers
	 listed

These variables can be adjusted:
	WEBPLUGIN_FILES: No default, must be
	 set manually. The plug-in files to install.

	WEBPLUGIN_DIR: The directory to
	 install the plug-in files to, default
	 PREFIX/lib/browser_plugins/WEBPLUGIN_NAME.
	 Set this if the port installs plug-in files outside of the
	 default directory to prevent broken symbolic links.

	WEBPLUGIN_NAME: The final directory
	 to install the plug-in files into, default
	 PKGBASE.

15.71. xfce
Possible arguments: (none), gtk3
Provide support for Xfce related
 ports. See 節 6.24, “使用 Xfce” for details.
The gtk3 argument specifies that the port
 requires GTK3 support. It adds
 additional features provided by some core components, for
 example, x11/libxfce4menu and
 x11-wm/xfce4-panel.
15.72. zip
Possible arguments: (none),
 infozip
Indicates that the distribution files use the ZIP
 compression algorithm. For files using the InfoZip algorithm
 the infozip argument must be passed to set
 the appropriate dependencies.
15.73. zope
Possible arguments: (none)
Uses www/zope. Mostly used
 for building zope related ports.
 ZOPE_VERSION can be used by a port to
 indicate that a specific version of
 zope shall be used.
章 16. __FreeBSD_version
 Values
Here is a convenient list of
 __FreeBSD_version values as defined in
 sys/param.h:
表格 16.1. __FreeBSD_version Values
	Value	Date	Release
	119411	 	2.0-RELEASE
	199501, 199503	March 19, 1995	2.1-CURRENT
	199504	April 9, 1995	2.0.5-RELEASE
	199508	August 26, 1995	2.2-CURRENT before 2.1
	199511	November 10, 1995	2.1.0-RELEASE
	199512	November 10, 1995	2.2-CURRENT before 2.1.5
	199607	July 10, 1996	2.1.5-RELEASE
	199608	July 12, 1996	2.2-CURRENT before 2.1.6
	199612	November 15, 1996	2.1.6-RELEASE
	199612	 	2.1.7-RELEASE
	220000	February 19, 1997	2.2-RELEASE
	(not changed)	 	2.2.1-RELEASE
	(not changed)	 	2.2-STABLE after 2.2.1-RELEASE
	221001	April 15, 1997	2.2-STABLE after texinfo-3.9
	221002	April 30, 1997	2.2-STABLE after top
	222000	May 16, 1997	2.2.2-RELEASE
	222001	May 19, 1997	2.2-STABLE after 2.2.2-RELEASE
	225000	October 2, 1997	2.2.5-RELEASE
	225001	November 20, 1997	2.2-STABLE after 2.2.5-RELEASE
	225002	December 27, 1997	2.2-STABLE after ldconfig -R merge
	226000	March 24, 1998	2.2.6-RELEASE
	227000	July 21, 1998	2.2.7-RELEASE
	227001	July 21, 1998	2.2-STABLE after 2.2.7-RELEASE
	227002	September 19, 1998	2.2-STABLE after semctl(2) change
	228000	November 29, 1998	2.2.8-RELEASE
	228001	November 29, 1998	2.2-STABLE after 2.2.8-RELEASE
	300000	February 19, 1996	3.0-CURRENT before mount(2) change
	300001	September 24, 1997	3.0-CURRENT after mount(2) change
	300002	June 2, 1998	3.0-CURRENT after semctl(2) change
	300003	June 7, 1998	3.0-CURRENT after ioctl arg changes
	300004	September 3, 1998	3.0-CURRENT after ELF conversion
	300005	October 16, 1998	3.0-RELEASE
	300006	October 16, 1998	3.0-CURRENT after 3.0-RELEASE
	300007	January 22, 1999	3.0-STABLE after 3/4 branch
	310000	February 9, 1999	3.1-RELEASE
	310001	March 27, 1999	3.1-STABLE after 3.1-RELEASE
	310002	April 14, 1999	3.1-STABLE after C++ constructor/destructor order
	 change
	320000	 	3.2-RELEASE
	320001	May 8, 1999	3.2-STABLE
	320002	August 29, 1999	3.2-STABLE after binary-incompatible IPFW and
	 socket changes
	330000	September 2, 1999	3.3-RELEASE
	330001	September 16, 1999	3.3-STABLE
	330002	November 24, 1999	3.3-STABLE after adding mkstemp(3)
	 to libc
	340000	December 5, 1999	3.4-RELEASE
	340001	December 17, 1999	3.4-STABLE
	350000	June 20, 2000	3.5-RELEASE
	350001	July 12, 2000	3.5-STABLE
	400000	January 22, 1999	4.0-CURRENT after 3.4 branch
	400001	February 20, 1999	4.0-CURRENT after change in dynamic linker
	 handling
	400002	March 13, 1999	4.0-CURRENT after C++ constructor/destructor
	 order change
	400003	March 27, 1999	4.0-CURRENT after functioning
	 dladdr(3)
	400004	April 5, 1999	4.0-CURRENT after __deregister_frame_info dynamic
	 linker bug fix (also 4.0-CURRENT after EGCS 1.1.2
	 integration)
	400005	April 27, 1999	4.0-CURRENT after suser(9) API change
	 (also 4.0-CURRENT after newbus)
	400006	May 31, 1999	4.0-CURRENT after cdevsw registration
	 change
	400007	June 17, 1999	4.0-CURRENT after the addition of so_cred for
	 socket level credentials
	400008	June 20, 1999	4.0-CURRENT after the addition of a poll syscall
	 wrapper to libc_r
	400009	July 20, 1999	4.0-CURRENT after the change of the kernel's
	 dev_t type to struct
	 specinfo pointer
	400010	September 25, 1999	4.0-CURRENT after fixing a hole
	 in jail(2)
	400011	September 29, 1999	4.0-CURRENT after the sigset_t
	 datatype change
	400012	November 15, 1999	4.0-CURRENT after the cutover to the GCC 2.95.2
	 compiler
	400013	December 4, 1999	4.0-CURRENT after adding pluggable linux-mode
	 ioctl handlers
	400014	January 18, 2000	4.0-CURRENT after importing OpenSSL
	400015	January 27, 2000	4.0-CURRENT after the C++ ABI change in GCC
	 2.95.2 from -fvtable-thunks to -fno-vtable-thunks by
	 default
	400016	February 27, 2000	4.0-CURRENT after importing OpenSSH
	400017	March 13, 2000	4.0-RELEASE
	400018	March 17, 2000	4.0-STABLE after 4.0-RELEASE
	400019	May 5, 2000	4.0-STABLE after the introduction of delayed
	 checksums.
	400020	June 4, 2000	4.0-STABLE after merging libxpg4 code into
	 libc.
	400021	July 8, 2000	4.0-STABLE after upgrading Binutils to 2.10.0,
	 ELF branding changes, and tcsh in the base
	 system.
	410000	July 14, 2000	4.1-RELEASE
	410001	July 29, 2000	4.1-STABLE after 4.1-RELEASE
	410002	September 16, 2000	4.1-STABLE after setproctitle(3) moved from
	 libutil to libc.
	411000	September 25, 2000	4.1.1-RELEASE
	411001	 	4.1.1-STABLE after 4.1.1-RELEASE
	420000	October 31, 2000	4.2-RELEASE
	420001	January 10, 2001	4.2-STABLE after combining libgcc.a and
	 libgcc_r.a, and associated GCC linkage
	 changes.
	430000	March 6, 2001	4.3-RELEASE
	430001	May 18, 2001	4.3-STABLE after wint_t introduction.
	430002	July 22, 2001	4.3-STABLE after PCI powerstate API
	 merge.
	440000	August 1, 2001	4.4-RELEASE
	440001	October 23, 2001	4.4-STABLE after d_thread_t introduction.
	440002	November 4, 2001	4.4-STABLE after mount structure changes (affects
	 filesystem klds).
	440003	December 18, 2001	4.4-STABLE after the userland components of smbfs
	 were imported.
	450000	December 20, 2001	4.5-RELEASE
	450001	February 24, 2002	4.5-STABLE after the usb structure element
	 rename.
	450004	April 16, 2002	4.5-STABLE after the
	 sendmail_enable rc.conf(5)
	 variable was made to take the value
	 NONE.
	450005	April 27, 2002	4.5-STABLE after moving to XFree86 4 by default
	 for package builds.
	450006	May 1, 2002	4.5-STABLE after accept filtering was fixed so
	 that is no longer susceptible to an easy DoS.
	460000	June 21, 2002	4.6-RELEASE
	460001	June 21, 2002	4.6-STABLE sendfile(2) fixed to comply with
	 documentation, not to count any headers sent against
	 the amount of data to be sent from the file.
	460002	July 19, 2002	4.6.2-RELEASE
	460100	June 26, 2002	4.6-STABLE
	460101	June 26, 2002	4.6-STABLE after MFC of `sed -i'.
	460102	September 1, 2002	4.6-STABLE after MFC of many new pkg_install
	 features from the HEAD.
	470000	October 8, 2002	4.7-RELEASE
	470100	October 9, 2002	4.7-STABLE
	470101	November 10, 2002	Start generated __std{in,out,err}p references
	 rather than __sF. This changes std{in,out,err} from a
	 compile time expression to a runtime one.
	470102	January 23, 2003	4.7-STABLE after MFC of mbuf changes to replace
	 m_aux mbufs by m_tag's
	470103	February 14, 2003	4.7-STABLE gets OpenSSL 0.9.7
	480000	March 30, 2003	
	480100	April 5, 2003	4.8-STABLE
	480101	May 22, 2003	4.8-STABLE after realpath(3) has been made
	 thread-safe
	480102	August 10, 2003	4.8-STABLE 3ware API changes to twe.
	490000	October 27, 2003	4.9-RELEASE
	490100	October 27, 2003	4.9-STABLE
	490101	January 8, 2004	4.9-STABLE after e_sid was added to struct
	 kinfo_eproc.
	490102	February 4, 2004	4.9-STABLE after MFC of libmap functionality
	 for rtld.
	491000	May 25, 2004	4.10-RELEASE
	491100	June 1, 2004	4.10-STABLE
	491101	August 11, 2004	4.10-STABLE after MFC of revision 20040629 of
	 the package tools
	491102	November 16, 2004	4.10-STABLE after VM fix dealing with unwiring
	 of fictitious pages
	492000	December 17, 2004	4.11-RELEASE
	492100	December 17, 2004	4.11-STABLE
	492101	April 18, 2006	4.11-STABLE after adding libdata/ldconfig
	 directories to mtree files.
	500000	March 13, 2000	5.0-CURRENT
	500001	April 18, 2000	5.0-CURRENT after adding addition ELF header
	 fields, and changing our ELF binary branding
	 method.
	500002	May 2, 2000	5.0-CURRENT after kld metadata changes.
	500003	May 18, 2000	5.0-CURRENT after buf/bio changes.
	500004	May 26, 2000	5.0-CURRENT after binutils upgrade.
	500005	June 3, 2000	5.0-CURRENT after merging libxpg4 code into
	 libc and after TASKQ interface introduction.
	500006	June 10, 2000	5.0-CURRENT after the addition of AGP
	 interfaces.
	500007	June 29, 2000	5.0-CURRENT after Perl upgrade to 5.6.0
	500008	July 7, 2000	5.0-CURRENT after the update of KAME code to
	 2000/07 sources.
	500009	July 14, 2000	5.0-CURRENT after ether_ifattach() and
	 ether_ifdetach() changes.
	500010	July 16, 2000	5.0-CURRENT after changing mtree defaults
	 back to original variant, adding -L to follow
	 symlinks.
	500011	July 18, 2000	5.0-CURRENT after kqueue API changed.
	500012	September 2, 2000	5.0-CURRENT after setproctitle(3) moved from
	 libutil to libc.
	500013	September 10, 2000	5.0-CURRENT after the first SMPng commit.
	500014	January 4, 2001	5.0-CURRENT after <sys/select.h> moved to
	 <sys/selinfo.h>.
	500015	January 10, 2001	5.0-CURRENT after combining libgcc.a and
	 libgcc_r.a, and associated GCC linkage
	 changes.
	500016	January 24, 2001	5.0-CURRENT after change allowing libc and libc_r
	 to be linked together, deprecating -pthread
	 option.
	500017	February 18, 2001	5.0-CURRENT after switch from struct ucred to
	 struct xucred to stabilize kernel-exported API for
	 mountd et al.
	500018	February 24, 2001	5.0-CURRENT after addition of CPUTYPE make
	 variable for controlling CPU-specific
	 optimizations.
	500019	June 9, 2001	5.0-CURRENT after moving machine/ioctl_fd.h to
	 sys/fdcio.h
	500020	June 15, 2001	5.0-CURRENT after locale names renaming.
	500021	June 22, 2001	5.0-CURRENT after Bzip2 import.
	 Also signifies removal of S/Key.
	500022	July 12, 2001	5.0-CURRENT after SSE support.
	500023	September 14, 2001	5.0-CURRENT after KSE Milestone 2.
	500024	October 1, 2001	5.0-CURRENT after d_thread_t,
	 and moving UUCP to ports.
	500025	October 4, 2001	5.0-CURRENT after ABI change for descriptor
	 and creds passing on 64 bit platforms.
	500026	October 9, 2001	5.0-CURRENT after moving to XFree86 4 by default
	 for package builds, and after the new libc strnstr()
	 function was added.
	500027	October 10, 2001	5.0-CURRENT after the new libc strcasestr()
	 function was added.
	500028	December 14, 2001	5.0-CURRENT after the userland components of
	 smbfs were imported.
	(not changed)	 	5.0-CURRENT after the new C99 specific-width
	 integer types were added.
	500029	January 29, 2002	5.0-CURRENT after a change was made in the return
	 value of sendfile(2).
	500030	February 15, 2002	5.0-CURRENT after the introduction of the
	 type fflags_t, which is the
	 appropriate size for file flags.
	500031	February 24, 2002	5.0-CURRENT after the usb structure element
	 rename.
	500032	March 16, 2002	5.0-CURRENT after the introduction of
	 Perl 5.6.1.
	500033	April 3, 2002	5.0-CURRENT after the
	 sendmail_enable rc.conf(5)
	 variable was made to take the value
	 NONE.
	500034	April 30, 2002	5.0-CURRENT after mtx_init() grew a third
	 argument.
	500035	May 13, 2002	5.0-CURRENT with Gcc 3.1.
	500036	May 17, 2002	5.0-CURRENT without Perl in /usr/src
	500037	May 29, 2002	5.0-CURRENT after the addition of
	 dlfunc(3)
	500038	July 24, 2002	5.0-CURRENT after the types of some struct
	 sockbuf members were changed and the structure was
	 reordered.
	500039	September 1, 2002	5.0-CURRENT after GCC 3.2.1 import.
	 Also after headers stopped using
	 _BSD_FOO_T_ and started using _FOO_T_DECLARED.
	 This value can also be used as a conservative
	 estimate of the start of bzip2(1) package
	 support.
	500040	September 20, 2002	5.0-CURRENT after various changes to disk
	 functions were made in the name of removing dependency
	 on disklabel structure internals.
	500041	October 1, 2002	5.0-CURRENT after the addition of
	 getopt_long(3) to libc.
	500042	October 15, 2002	5.0-CURRENT after Binutils 2.13 upgrade, which
	 included new FreeBSD emulation, vec, and output
	 format.
	500043	November 1, 2002	5.0-CURRENT after adding weak pthread_XXX stubs
	 to libc, obsoleting libXThrStub.so.
	 5.0-RELEASE.
	500100	January 17, 2003	5.0-CURRENT after branching for
	 RELENG_5_0
	500101	February 19, 2003	<sys/dkstat.h> is empty. Do not include
	 it.
	500102	February 25, 2003	5.0-CURRENT after the d_mmap_t interface
	 change.
	500103	February 26, 2003	5.0-CURRENT after taskqueue_swi changed to run
	 without Giant, and taskqueue_swi_giant added to run
	 with Giant.
	500104	February 27, 2003	cdevsw_add() and cdevsw_remove() no
	 longer exists.
	 Appearance of MAJOR_AUTO allocation facility.
	500105	March 4, 2003	5.0-CURRENT after new cdevsw initialization
	 method.
	500106	March 8, 2003	devstat_add_entry() has been replaced by
	 devstat_new_entry()
	500107	March 15, 2003	Devstat interface change; see sys/sys/param.h
	 1.149
	500108	March 15, 2003	Token-Ring interface changes.
	500109	March 25, 2003	Addition of vm_paddr_t.
	500110	March 28, 2003	5.0-CURRENT after realpath(3) has been made
	 thread-safe
	500111	April 9, 2003	5.0-CURRENT after usbhid(3) has been synced
	 with NetBSD
	500112	April 17, 2003	5.0-CURRENT after new NSS implementation
	 and addition of POSIX.1 getpw*_r, getgr*_r
	 functions
	500113	May 2, 2003	5.0-CURRENT after removal of the old rc
	 system.
	501000	June 4, 2003	5.1-RELEASE.
	501100	June 2, 2003	5.1-CURRENT after branching for
	 RELENG_5_1.
	501101	June 29, 2003	5.1-CURRENT after correcting the semantics of
	 sigtimedwait(2) and sigwaitinfo(2).
	501102	July 3, 2003	5.1-CURRENT after adding the lockfunc and
	 lockfuncarg fields to
	 bus_dma_tag_create(9).
	501103	July 31, 2003	5.1-CURRENT after GCC 3.3.1-pre 20030711 snapshot
	 integration.
	501104	August 5, 2003	5.1-CURRENT 3ware API changes to twe.
	501105	August 17, 2003	5.1-CURRENT dynamically-linked /bin and /sbin
	 support and movement of libraries to /lib.
	501106	September 8, 2003	5.1-CURRENT after adding kernel support for
	 Coda 6.x.
	501107	September 17, 2003	5.1-CURRENT after 16550 UART constants moved from
	 <dev/sio/sioreg.h> to
	 <dev/ic/ns16550.h>.
	 Also when libmap functionality was unconditionally
	 supported by rtld.
	501108	September 23, 2003	5.1-CURRENT after PFIL_HOOKS API update
	501109	September 27, 2003	5.1-CURRENT after adding kiconv(3)
	501110	September 28, 2003	5.1-CURRENT after changing default operations
	 for open and close in cdevsw
	501111	October 16, 2003	5.1-CURRENT after changed layout of
	 cdevsw
	501112	October 16, 2003	 5.1-CURRENT after adding kobj multiple
	 inheritance
	501113	October 31, 2003	 5.1-CURRENT after the if_xname change in
	 struct ifnet
	501114	November 16, 2003	 5.1-CURRENT after changing /bin and /sbin to
	 be dynamically linked
	502000	December 7, 2003	5.2-RELEASE
	502010	February 23, 2004	5.2.1-RELEASE
	502100	December 7, 2003	5.2-CURRENT after branching for
	 RELENG_5_2
	502101	December 19, 2003	5.2-CURRENT after __cxa_atexit/__cxa_finalize
	 functions were added to libc.
	502102	January 30, 2004	5.2-CURRENT after change of default thread
	 library from libc_r to libpthread.
	502103	February 21, 2004	5.2-CURRENT after device driver API
	 megapatch.
	502104	February 25, 2004	5.2-CURRENT after getopt_long_only()
	 addition.
	502105	March 5, 2004	5.2-CURRENT after NULL is made into ((void *)0)
	 for C, creating more warnings.
	502106	March 8, 2004	5.2-CURRENT after pf is linked to the build and
	 install.
	502107	March 10, 2004	5.2-CURRENT after time_t is changed to a
	 64-bit value on sparc64.
	502108	March 12, 2004	5.2-CURRENT after Intel C/C++ compiler support in
	 some headers and execve(2) changes to be more strictly
	 conforming to POSIX.
	502109	March 22, 2004	5.2-CURRENT after the introduction of the
	 bus_alloc_resource_any API
	502110	March 27, 2004	5.2-CURRENT after the addition of UTF-8
	 locales
	502111	April 11, 2004	5.2-CURRENT after the removal of the getvfsent(3)
	 API
	502112	April 13, 2004	5.2-CURRENT after the addition of the .warning
	 directive for make.
	502113	June 4, 2004	5.2-CURRENT after ttyioctl() was made mandatory
	 for serial drivers.
	502114	June 13, 2004	5.2-CURRENT after import of the ALTQ
	 framework.
	502115	June 14, 2004	5.2-CURRENT after changing sema_timedwait(9) to
	 return 0 on success and a non-zero error code on
	 failure.
	502116	June 16, 2004	5.2-CURRENT after changing kernel dev_t to be
	 pointer to struct cdev *.
	502117	June 17, 2004	5.2-CURRENT after changing kernel udev_t to
	 dev_t.
	502118	June 17, 2004	5.2-CURRENT after adding support for
	 CLOCK_VIRTUAL and CLOCK_PROF to clock_gettime(2) and
	 clock_getres(2).
	502119	June 22, 2004	5.2-CURRENT after changing network interface
	 cloning overhaul.
	502120	July 2, 2004	5.2-CURRENT after the update of the package tools
	 to revision 20040629.
	502121	July 9, 2004	5.2-CURRENT after marking Bluetooth code as
	 non-i386 specific.
	502122	July 11, 2004	5.2-CURRENT after the introduction of the KDB
	 debugger framework, the conversion of DDB into a
	 backend and the introduction of the GDB
	 backend.
	502123	July 12, 2004	5.2-CURRENT after change to make VFS_ROOT take a
	 struct thread argument as does vflush. Struct
	 kinfo_proc now has a user data pointer. The switch of
	 the default X implementation to
	 xorg was also made at this
	 time.
	502124	July 24, 2004	5.2-CURRENT after the change to separate the way
	 ports rc.d and legacy scripts are started.
	502125	July 28, 2004	5.2-CURRENT after the backout of the previous
	 change.
	502126	July 31, 2004	5.2-CURRENT after the removal of
	 kmem_alloc_pageable() and the import of gcc
	 3.4.2.
	502127	August 2, 2004	5.2-CURRENT after changing the UMA kernel
	 API to allow ctors/inits to fail.
	502128	August 8, 2004	5.2-CURRENT after the change of the
	 vfs_mount signature as well as global replacement of
	 PRISON_ROOT with SUSER_ALLOWJAIL for the suser(9)
	 API.
	503000	August 23, 2004	5.3-BETA/RC before the pfil API change
	503001	September 22, 2004	5.3-RELEASE
	503100	October 16, 2004	5.3-STABLE after branching for RELENG_5_3
	503101	December 3, 2004	5.3-STABLE after addition of glibc style
	 strftime(3) padding options.
	503102	February 13, 2005	5.3-STABLE after OpenBSD's nc(1) import
	 MFC.
	503103	February 27, 2005	5.4-PRERELEASE after the MFC of the fixes in
	 <src/include/stdbool.h> and
	 <src/sys/i386/include/_types.h>
	 for using the GCC-compatibility of the Intel C/C++
	 compiler.
	503104	February 28, 2005	5.4-PRERELEASE after the MFC of the change of
	 ifi_epoch from wall clock time to uptime.
	503105	March 2, 2005	5.4-PRERELEASE after the MFC of the fix of
	 EOVERFLOW check in vswprintf(3).
	504000	April 3, 2005	5.4-RELEASE.
	504100	April 3, 2005	5.4-STABLE after branching for RELENG_5_4
	504101	May 11, 2005	5.4-STABLE after increasing the default
	 thread stacksizes
	504102	June 24, 2005	5.4-STABLE after the addition of sha256
	504103	October 3, 2005	5.4-STABLE after the MFC of if_bridge
	504104	November 13, 2005	5.4-STABLE after the MFC of bsdiff and
	 portsnap
	504105	January 17, 2006	5.4-STABLE after MFC of ldconfig_local_dirs
	 change.
	505000	May 12, 2006	5.5-RELEASE.
	505100	May 12, 2006	5.5-STABLE after branching for RELENG_5_5
	600000	August 18, 2004	6.0-CURRENT
	600001	August 27, 2004	6.0-CURRENT after permanently enabling PFIL_HOOKS
	 in the kernel.
	600002	August 30, 2004	6.0-CURRENT after initial addition of
	 ifi_epoch to struct if_data. Backed out after a
	 few days. Do not use this value.
	600003	September 8, 2004	6.0-CURRENT after the re-addition of the
	 ifi_epoch member of struct if_data.
	600004	September 29, 2004	6.0-CURRENT after addition of the struct inpcb
	 argument to the pfil API.
	600005	October 5, 2004	6.0-CURRENT after addition of the "-d
	 DESTDIR" argument to newsyslog.
	600006	November 4, 2004	6.0-CURRENT after addition of glibc style
	 strftime(3) padding options.
	600007	December 12, 2004	6.0-CURRENT after addition of 802.11 framework
	 updates.
	600008	January 25, 2005	6.0-CURRENT after changes to VOP_*VOBJECT()
	 functions and introduction of MNTK_MPSAFE flag for
	 Giantfree filesystems.
	600009	February 4, 2005	6.0-CURRENT after addition of the cpufreq
	 framework and drivers.
	600010	February 6, 2005	6.0-CURRENT after importing OpenBSD's
	 nc(1).
	600011	February 12, 2005	6.0-CURRENT after removing semblance of SVID2
	 matherr() support.
	600012	February 15, 2005	6.0-CURRENT after increase of default thread
	 stacks' size.
	600013	February 19, 2005	6.0-CURRENT after fixes in
	 <src/include/stdbool.h> and
	 <src/sys/i386/include/_types.h>
	 for using the GCC-compatibility of the Intel C/C++
	 compiler.
	600014	February 21, 2005	6.0-CURRENT after EOVERFLOW checks in
	 vswprintf(3) fixed.
	600015	February 25, 2005	6.0-CURRENT after changing the struct if_data
	 member, ifi_epoch, from wall clock time to
	 uptime.
	600016	February 26, 2005	6.0-CURRENT after LC_CTYPE disk format
	 changed.
	600017	February 27, 2005	6.0-CURRENT after NLS catalogs disk format
	 changed.
	600018	February 27, 2005	6.0-CURRENT after LC_COLLATE disk format
	 changed.
	600019	February 28, 2005	Installation of acpica includes into
	 /usr/include.
	600020	March 9, 2005	Addition of MSG_NOSIGNAL flag to send(2)
	 API.
	600021	March 17, 2005	Addition of fields to cdevsw
	600022	March 21, 2005	Removed gtar from base system.
	600023	April 13, 2005	LOCAL_CREDS, LOCAL_CONNWAIT socket options added
	 to unix(4).
	600024	April 19, 2005	hwpmc(4) and related tools added to
	 6.0-CURRENT.
	600025	April 26, 2005	struct icmphdr added to 6.0-CURRENT.
	600026	May 3, 2005	pf updated to 3.7.
	600027	May 6, 2005	Kernel libalias and ng_nat introduced.
	600028	May 13, 2005	POSIX ttyname_r(3) made available through
	 unistd.h and libc.
	600029	May 29, 2005	6.0-CURRENT after libpcap updated to v0.9.1 alpha
	 096.
	600030	June 5, 2005	6.0-CURRENT after importing NetBSD's
	 if_bridge(4).
	600031	June 10, 2005	6.0-CURRENT after struct ifnet was broken out
	 of the driver softcs.
	600032	July 11, 2005	6.0-CURRENT after the import of libpcap
	 v0.9.1.
	600033	July 25, 2005	6.0-STABLE after bump of all shared library
	 versions that had not been changed since
	 RELENG_5.
	600034	August 13, 2005	6.0-STABLE after credential argument is added to
	 dev_clone event handler. 6.0-RELEASE.
	600100	November 1, 2005	6.0-STABLE after 6.0-RELEASE
	600101	December 21, 2005	6.0-STABLE after incorporating scripts from the
	 local_startup directories into the base
	 rcorder(8).
	600102	December 30, 2005	6.0-STABLE after updating the ELF types and
	 constants.
	600103	January 15, 2006	6.0-STABLE after MFC of pidfile(3) API.
	600104	January 17, 2006	6.0-STABLE after MFC of ldconfig_local_dirs
	 change.
	600105	February 26, 2006	6.0-STABLE after NLS catalog support of
	 csh(1).
	601000	May 6, 2006	6.1-RELEASE
	601100	May 6, 2006	6.1-STABLE after 6.1-RELEASE.
	601101	June 22, 2006	6.1-STABLE after the import of csup.
	601102	July 11, 2006	6.1-STABLE after the iwi(4) update.
	601103	July 17, 2006	6.1-STABLE after the resolver update to
	 BIND9, and exposure of reentrant version of
	 netdb functions.
	601104	August 8, 2006	6.1-STABLE after DSO (dynamic shared
	 objects) support has been enabled in
	 OpenSSL.
	601105	September 2, 2006	6.1-STABLE after 802.11 fixups changed the
	 api for the IEEE80211_IOC_STA_INFO ioctl.
	602000	November 15, 2006	6.2-RELEASE
	602100	September 15, 2006	6.2-STABLE after 6.2-RELEASE.
	602101	December 12, 2006	6.2-STABLE after the addition of Wi-Spy
	 quirk.
	602102	December 28, 2006	6.2-STABLE after pci_find_extcap()
	 addition.
	602103	January 16, 2007	6.2-STABLE after MFC of dlsym change to look for
	 a requested symbol both in specified dso and its
	 implicit dependencies.
	602104	January 28, 2007	6.2-STABLE after MFC of ng_deflate(4) and
	 ng_pred1(4) netgraph nodes and new compression and
	 encryption modes for ng_ppp(4) node.
	602105	February 20, 2007	6.2-STABLE after MFC of BSD licensed version of
	 gzip(1) ported from NetBSD.
	602106	March 31, 2007	6.2-STABLE after MFC of PCI MSI and MSI-X
	 support.
	602107	April 6, 2007	6.2-STABLE after MFC of ncurses 5.6 and wide
	 character support.
	602108	April 11, 2007	6.2-STABLE after MFC of CAM 'SG' peripheral
	 device, which implements a subset of Linux SCSI SG
	 passthrough device API.
	602109	April 17, 2007	6.2-STABLE after MFC of readline 5.2 patchset
	 002.
	602110	May 2, 2007	6.2-STABLE after MFC of pmap_invalidate_cache(),
	 pmap_change_attr(), pmap_mapbios(),
	 pmap_mapdev_attr(), and pmap_unmapbios() for amd64 and
	 i386.
	602111	June 11, 2007	6.2-STABLE after MFC of BOP_BDFLUSH and caused
	 breakage of the filesystem modules KBI.
	602112	September 21, 2007	6.2-STABLE after libutil(3) MFC's.
	602113	October 25, 2007	6.2-STABLE after MFC of wide and single byte
	 ctype separation. Newly compiled binary that
	 references to ctype.h may require a new symbol,
	 __mb_sb_limit, which is not available on older
	 systems.
	602114	October 30, 2007	6.2-STABLE after ctype ABI forward compatibility
	 restored.
	602115	November 21, 2007	6.2-STABLE after back out of wide and single byte
	 ctype separation.
	603000	November 25, 2007	6.3-RELEASE
	603100	November 25, 2007	6.3-STABLE after 6.3-RELEASE.
	603101	December 7, 2007	6.3-STABLE after fixing
	 multibyte type support in bit macro.
	603102	April 24, 2008	6.3-STABLE after adding l_sysid to struct
	 flock.
	603103	May 27, 2008	6.3-STABLE after MFC of the
	 memrchr function.
	603104	June 15, 2008	6.3-STABLE after MFC of support for
	 :u variable modifier in
	 make(1).
	604000	October 4, 2008	6.4-RELEASE
	604100	October 4, 2008	6.4-STABLE after 6.4-RELEASE.
	700000	July 11, 2005	7.0-CURRENT.
	700001	July 23, 2005	7.0-CURRENT after bump of all shared library
	 versions that had not been changed since
	 RELENG_5.
	700002	August 13, 2005	7.0-CURRENT after credential argument is added to
	 dev_clone event handler.
	700003	August 25, 2005	7.0-CURRENT after memmem(3) is added to
	 libc.
	700004	October 30, 2005	7.0-CURRENT after solisten(9) kernel arguments
	 are modified to accept a backlog parameter.
	700005	November 11, 2005	7.0-CURRENT after IFP2ENADDR() was changed to
	 return a pointer to IF_LLADDR().
	700006	November 11, 2005	7.0-CURRENT after addition of
	 if_addr member to struct
	 ifnet and IFP2ENADDR() removal.
	700007	December 2, 2005	7.0-CURRENT after incorporating scripts from the
	 local_startup directories into the base
	 rcorder(8).
	700008	December 5, 2005	7.0-CURRENT after removal of MNT_NODEV mount
	 option.
	700009	December 19, 2005	7.0-CURRENT after ELF-64 type changes and symbol
	 versioning.
	700010	December 20, 2005	7.0-CURRENT after addition of hostb and vgapci
	 drivers, addition of pci_find_extcap(), and changing
	 the AGP drivers to no longer map the aperture.
	700011	December 31, 2005	7.0-CURRENT after tv_sec was made time_t on
	 all platforms but Alpha.
	700012	January 8, 2006	7.0-CURRENT after ldconfig_local_dirs
	 change.
	700013	January 12, 2006	7.0-CURRENT after changes to
	 /etc/rc.d/abi to support
	 /compat/linux/etc/ld.so.cache
	 being a symlink in a readonly filesystem.
	700014	January 26, 2006	7.0-CURRENT after pts import.
	700015	March 26, 2006	7.0-CURRENT after the introduction of version 2
	 of hwpmc(4)'s ABI.
	700016	April 22, 2006	7.0-CURRENT after addition of fcloseall(3)
	 to libc.
	700017	May 13, 2006	7.0-CURRENT after removal of ip6fw.
	700018	July 15, 2006	7.0-CURRENT after import of snd_emu10kx.
	700019	July 29, 2006	7.0-CURRENT after import of OpenSSL
	 0.9.8b.
	700020	September 3, 2006	7.0-CURRENT after addition of bus_dma_get_tag
	 function
	700021	September 4, 2006	7.0-CURRENT after libpcap 0.9.4 and tcpdump 3.9.4
	 import.
	700022	September 9, 2006	7.0-CURRENT after dlsym change to look for a
	 requested symbol both in specified dso and its
	 implicit dependencies.
	700023	September 23, 2006	7.0-CURRENT after adding new sound IOCTLs for the
	 OSSv4 mixer API.
	700024	September 28, 2006	7.0-CURRENT after import of OpenSSL
	 0.9.8d.
	700025	November 11, 2006	7.0-CURRENT after the addition of libelf.
	700026	November 26, 2006	7.0-CURRENT after major changes on sound
	 sysctls.
	700027	November 30, 2006	7.0-CURRENT after the addition of Wi-Spy
	 quirk.
	700028	December 15, 2006	7.0-CURRENT after the addition of sctp calls to
	 libc
	700029	January 26, 2007	7.0-CURRENT after the GNU gzip(1)
	 implementation was replaced with a BSD licensed
	 version ported from NetBSD.
	700030	February 7, 2007	7.0-CURRENT after the removal of IPIP tunnel
	 encapsulation (VIFF_TUNNEL) from the IPv4 multicast
	 forwarding code.
	700031	February 23, 2007	7.0-CURRENT after the modification of
	 bus_setup_intr() (newbus).
	700032	March 2, 2007	7.0-CURRENT after the inclusion of ipw(4) and
	 iwi(4) firmware.
	700033	March 9, 2007	7.0-CURRENT after the inclusion of ncurses wide
	 character support.
	700034	March 19, 2007	7.0-CURRENT after changes to how insmntque(),
	 getnewvnode(), and vfs_hash_insert() work.
	700035	March 26, 2007	7.0-CURRENT after addition of a notify mechanism
	 for CPU frequency changes.
	700036	April 6, 2007	7.0-CURRENT after import of the ZFS
	 filesystem.
	700037	April 8, 2007	7.0-CURRENT after addition of CAM 'SG' peripheral
	 device, which implements a subset of Linux SCSI SG
	 passthrough device API.
	700038	April 30, 2007	7.0-CURRENT after changing getenv(3),
	 putenv(3), setenv(3) and unsetenv(3) to
	 be POSIX conformant.
	700039	May 1, 2007	7.0-CURRENT after the changes in 700038 were
	 backed out.
	700040	May 10, 2007	7.0-CURRENT after the addition of flopen(3)
	 to libutil.
	700041	May 13, 2007	7.0-CURRENT after enabling symbol versioning, and
	 changing the default thread library to libthr.
	700042	May 19, 2007	7.0-CURRENT after the import of gcc
	 4.2.0.
	700043	May 21, 2007	7.0-CURRENT after bump of all shared library
	 versions that had not been changed since
	 RELENG_6.
	700044	June 7, 2007	7.0-CURRENT after changing the argument for
	 vn_open()/VOP_OPEN() from file descriptor index to the
	 struct file *.
	700045	June 10, 2007	7.0-CURRENT after changing pam_nologin(8) to
	 provide an account management function instead of an
	 authentication function to the PAM framework.
	700046	June 11, 2007	7.0-CURRENT after updated 802.11 wireless
	 support.
	700047	June 11, 2007	7.0-CURRENT after adding TCP LRO interface
	 capabilities.
	700048	June 12, 2007	7.0-CURRENT after
	 RFC 3678 API support added to the IPv4 stack.
	 Legacy RFC 1724 behavior of the IP_MULTICAST_IF
	 ioctl has now been removed; 0.0.0.0/8 may no longer
	 be used to specify an interface index.
	 Use struct ipmreqn instead.
	700049	July 3, 2007	7.0-CURRENT after importing pf from OpenBSD
	 4.1
	(not changed)	 	7.0-CURRENT after adding IPv6 support for
	 FAST_IPSEC, deleting KAME IPSEC, and renaming
	 FAST_IPSEC to IPSEC.
	700050	July 4, 2007	7.0-CURRENT after converting setenv/putenv/etc.
	 calls from traditional BSD to POSIX.
	700051	July 4, 2007	7.0-CURRENT after adding new mmap/lseek/etc
	 syscalls.
	700052	July 6, 2007	7.0-CURRENT after moving I4B headers to
	 include/i4b.
	700053	September 30, 2007	7.0-CURRENT after the addition of support for
	 PCI domains
	700054	October 25, 2007	7.0-CURRENT after MFC of wide and single byte
	 ctype separation.
	700055	October 28, 2007	7.0-RELEASE, and 7.0-CURRENT after ABI backwards
	 compatibility to the FreeBSD 4/5/6 versions of the
	 PCIOCGETCONF, PCIOCREAD and PCIOCWRITE IOCTLs was
	 MFCed, which required the ABI of the PCIOCGETCONF
	 IOCTL to be broken again
	700100	December 22, 2007	7.0-STABLE after 7.0-RELEASE
	700101	February 8, 2008	7.0-STABLE after the MFC of m_collapse().
	700102	March 30, 2008	7.0-STABLE after the MFC of
	 kdb_enter_why().
	700103	April 10, 2008	7.0-STABLE after adding l_sysid to struct
	 flock.
	700104	April 11, 2008	7.0-STABLE after the MFC of procstat(1).
	700105	April 11, 2008	7.0-STABLE after the MFC of umtx
	 features.
	700106	April 15, 2008	7.0-STABLE after the MFC of write(2) support
	 to psm(4).
	700107	April 20, 2008	7.0-STABLE after the MFC of F_DUP2FD command
	 to fcntl(2).
	700108	May 5, 2008	7.0-STABLE after some lockmgr(9) changes,
	 which makes it necessary to include
	 sys/lock.h to use
	 lockmgr(9).
	700109	May 27, 2008	7.0-STABLE after MFC of the
	 memrchr function.
	700110	August 5, 2008	7.0-STABLE after MFC of kernel NFS lockd
	 client.
	700111	August 20, 2008	7.0-STABLE after addition of physically
	 contiguous jumbo frame support.
	700112	August 27, 2008	7.0-STABLE after MFC of kernel DTrace
	 support.
	701000	November 25, 2008	7.1-RELEASE
	701100	November 25, 2008	7.1-STABLE after 7.1-RELEASE.
	701101	January 10, 2009	7.1-STABLE after strndup
	 merge.
	701102	January 17, 2009	7.1-STABLE after cpuctl(4) support
	 added.
	701103	February 7, 2009	7.1-STABLE after the merge of
	 multi-/no-IPv4/v6 jails.
	701104	February 14, 2009	7.1-STABLE after the store of the suspension
	 owner in the struct mount, and introduction of
	 vfs_susp_clean method into the struct vfsops.
	701105	March 12, 2009	7.1-STABLE after the incompatible change
	 to the kern.ipc.shmsegs sysctl to allow allocating
	 larger SysV shared memory segments on 64bit
	 architectures.
	701106	March 14, 2009	7.1-STABLE after the merge of a fix for
	 POSIX semaphore wait operations.
	702000	April 15, 2009	7.2-RELEASE
	702100	April 15, 2009	7.2-STABLE after 7.2-RELEASE.
	702101	May 15, 2009	7.2-STABLE after ichsmb(4) was changed to
	 use left-adjusted slave addressing to match other
	 SMBus controller drivers.
	702102	May 28, 2009	7.2-STABLE after MFC of the
	 fdopendir function.
	702103	June 06, 2009	7.2-STABLE after MFC of PmcTools.
	702104	July 14, 2009	7.2-STABLE after MFC of the
	 closefrom system call.
	702105	July 31, 2009	7.2-STABLE after MFC of the SYSVIPC ABI
	 change.
	702106	September 14, 2009	7.2-STABLE after MFC of the x86 PAT
	 enhancements and addition of d_mmap_single() and
	 the scatter/gather list VM object type.
	703000	February 9, 2010	7.3-RELEASE
	703100	February 9, 2010	7.3-STABLE after 7.3-RELEASE.
	704000	December 22, 2010	7.4-RELEASE
	704100	December 22, 2010	7.4-STABLE after 7.4-RELEASE.
	800000	October 11, 2007	8.0-CURRENT. Separating wide and single byte
	 ctype.
	800001	October 16, 2007	8.0-CURRENT after libpcap 0.9.8 and tcpdump 3.9.8
	 import.
	800002	October 21, 2007	8.0-CURRENT after renaming kthread_create()
	 and friends to kproc_create() etc.
	800003	October 24, 2007	8.0-CURRENT after ABI backwards compatibility
	 to the FreeBSD 4/5/6 versions of the PCIOCGETCONF,
	 PCIOCREAD and PCIOCWRITE IOCTLs was added, which
	 required the ABI of the PCIOCGETCONF IOCTL to be
	 broken again
	800004	November 12, 2007	8.0-CURRENT after agp(4) driver moved from
	 src/sys/pci to src/sys/dev/agp
	800005	December 4, 2007	8.0-CURRENT after changes to the jumbo frame
	 allocator (rev 174247).
	800006	December 7, 2007	8.0-CURRENT after the addition of callgraph
	 capture functionality to hwpmc(4).
	800007	December 25, 2007	8.0-CURRENT after kdb_enter() gains a "why"
	 argument.
	800008	December 28, 2007	8.0-CURRENT after LK_EXCLUPGRADE option
	 removal.
	800009	January 9, 2008	8.0-CURRENT after introduction of
	 lockmgr_disown(9)
	800010	January 10, 2008	8.0-CURRENT after the vn_lock(9) prototype
	 change.
	800011	January 13, 2008	8.0-CURRENT after the VOP_LOCK(9) and
	 VOP_UNLOCK(9) prototype changes.
	800012	January 19, 2008	8.0-CURRENT after introduction of
	 lockmgr_recursed(9), BUF_RECURSED(9) and
	 BUF_ISLOCKED(9) and the removal of
	 BUF_REFCNT().
	800013	January 23, 2008	8.0-CURRENT after introduction of the
	 “ASCII” encoding.
	800014	January 24, 2008	8.0-CURRENT after changing the prototype of
	 lockmgr(9) and removal of
	 lockcount() and
	 LOCKMGR_ASSERT().
	800015	January 26, 2008	8.0-CURRENT after extending the types
	 of the fts(3) structures.
	800016	February 1, 2008	8.0-CURRENT after adding an argument to
	 MEXTADD(9)
	800017	February 6, 2008	8.0-CURRENT after the introduction of
	 LK_NODUP and LK_NOWITNESS options in the
	 lockmgr(9) space.
	800018	February 8, 2008	8.0-CURRENT after the addition of
	 m_collapse.
	800019	February 9, 2008	8.0-CURRENT after the addition of current
	 working directory, root directory, and jail
	 directory support to the kern.proc.filedesc
	 sysctl.
	800020	February 13, 2008	8.0-CURRENT after introduction of
	 lockmgr_assert(9) and
	 BUF_ASSERT functions.
	800021	February 15, 2008	8.0-CURRENT after introduction of
	 lockmgr_args(9) and LK_INTERNAL flag
	 removal.
	800022	(backed out)	8.0-CURRENT after changing the default system ar
	 to BSD ar(1).
	800023	February 25, 2008	8.0-CURRENT after changing the prototypes of
	 lockstatus(9) and VOP_ISLOCKED(9), more
	 specifically retiring the
	 struct thread argument.
	800024	March 1, 2008	8.0-CURRENT after axing out the
	 lockwaiters and
	 BUF_LOCKWAITERS functions,
	 changing the return value of
	 brelvp from void to int and
	 introducing new flags for lockinit(9).
	800025	March 8, 2008	8.0-CURRENT after adding F_DUP2FD command
	 to fcntl(2).
	800026	March 12, 2008	8.0-CURRENT after changing the priority parameter
	 to cv_broadcastpri such that 0 means no
	 priority.
	800027	March 24, 2008	8.0-CURRENT after changing the bpf monitoring ABI
	 when zerocopy bpf buffers were added.
	800028	March 26, 2008	8.0-CURRENT after adding l_sysid to struct
	 flock.
	800029	March 28, 2008	8.0-CURRENT after reintegration of the
	 BUF_LOCKWAITERS function and the
	 addition of lockmgr_waiters(9).
	800030	April 1, 2008	8.0-CURRENT after the introduction of the
	 rw_try_rlock(9) and rw_try_wlock(9)
	 functions.
	800031	April 6, 2008	8.0-CURRENT after the introduction of the
	 lockmgr_rw and
	 lockmgr_args_rw
	 functions.
	800032	April 8, 2008	8.0-CURRENT after the implementation of the
	 openat and related syscalls, introduction of the
	 O_EXEC flag for the open(2), and providing the
	 corresponding linux compatibility syscalls.
	800033	April 8, 2008	8.0-CURRENT after added write(2) support for
	 psm(4) in native operation level. Now arbitrary
	 commands can be written to
	 /dev/psm%d and status can be
	 read back from it.
	800034	April 10, 2008	8.0-CURRENT after introduction of the
	 memrchr function.
	800035	April 16, 2008	8.0-CURRENT after introduction of the
	 fdopendir function.
	800036	April 20, 2008	8.0-CURRENT after switchover of 802.11 wireless
	 to multi-bss support (aka vaps).
	800037	May 9, 2008	8.0-CURRENT after addition of multi routing
	 table support (aka setfib(1), setfib(2)).
	800038	May 26, 2008	8.0-CURRENT after removal of netatm and
	 ISDN4BSD. Also, the addition of the
	 Compact C Type (CTF) tools.
	800039	June 14, 2008	8.0-CURRENT after removal of sgtty.
	800040	June 26, 2008	8.0-CURRENT with kernel NFS lockd client.
	800041	July 22, 2008	8.0-CURRENT after addition of arc4random_buf(3)
	 and arc4random_uniform(3).
	800042	August 8, 2008	8.0-CURRENT after addition of cpuctl(4).
	800043	August 13, 2008	8.0-CURRENT after changing bpf(4) to use a
	 single device node, instead of device cloning.
	800044	August 17, 2008	8.0-CURRENT after the commit of the first step of
	 the vimage project renaming global variables to be
	 virtualized with a V_ prefix with macros to map them
	 back to their global names.
	800045	August 20, 2008	8.0-CURRENT after the integration of the
	 MPSAFE TTY layer, including changes to various
	 drivers and utilities that interact with it.
	800046	September 8, 2008	8.0-CURRENT after the separation of the GDT
	 per CPU on amd64 architecture.
	800047	September 10, 2008	8.0-CURRENT after removal of VSVTX, VSGID
	 and VSUID.
	800048	September 16, 2008	8.0-CURRENT after converting the kernel NFS mount
	 code to accept individual mount options in the
	 nmount() iovec, not just one big
	 struct nfs_args.
	800049	September 17, 2008	8.0-CURRENT after the removal of suser(9)
	 and suser_cred(9).
	800050	October 20, 2008	8.0-CURRENT after buffer cache API
	 change.
	800051	October 23, 2008	8.0-CURRENT after the removal of the
	 MALLOC(9) and FREE(9) macros.
	800052	October 28, 2008	8.0-CURRENT after the introduction of accmode_t
	 and renaming of VOP_ACCESS 'a_mode' argument
	 to 'a_accmode'.
	800053	November 2, 2008	8.0-CURRENT after the prototype change of
	 vfs_busy(9) and the introduction of its
	 MBF_NOWAIT and MBF_MNTLSTLOCK flags.
	800054	November 22, 2008	8.0-CURRENT after the addition of buf_ring,
	 memory barriers and ifnet functions to facilitate
	 multiple hardware transmit queues for cards that
	 support them, and a lockless ring-buffer
	 implementation to enable drivers to more efficiently
	 manage queuing of packets.
	800055	November 27, 2008	8.0-CURRENT after the addition of Intel™
	 Core, Core2, and Atom support to
	 hwpmc(4).
	800056	November 29, 2008	8.0-CURRENT after the introduction of
	 multi-/no-IPv4/v6 jails.
	800057	December 1, 2008	8.0-CURRENT after the switch to the
	 ath hal source code.
	800058	December 12, 2008	8.0-CURRENT after the introduction of
	 the VOP_VPTOCNP operation.
	800059	December 15, 2008	8.0-CURRENT incorporates the
	 new arp-v2 rewrite.
	800060	December 19, 2008	8.0-CURRENT after the addition of makefs.
	800061	January 15, 2009	8.0-CURRENT after TCP Appropriate Byte
	 Counting.
	800062	January 28, 2009	8.0-CURRENT after removal of minor(),
	 minor2unit(), unit2minor(), etc.
	800063	February 18, 2009	8.0-CURRENT after GENERIC config change to use
	 the USB2 stack, but also the addition of
	 fdevname(3).
	800064	February 23, 2009	8.0-CURRENT after the USB2 stack is moved to and
	 replaces dev/usb.
	800065	February 26, 2009	8.0-CURRENT after the renaming of all functions
	 in libmp(3).
	800066	February 27, 2009	8.0-CURRENT after changing USB devfs handling and
	 layout.
	800067	February 28, 2009	8.0-CURRENT after adding getdelim(), getline(),
	 stpncpy(), strnlen(), wcsnlen(), wcscasecmp(), and
	 wcsncasecmp().
	800068	March 2, 2009	8.0-CURRENT after renaming the ushub devclass to
	 uhub.
	800069	March 9, 2009	8.0-CURRENT after libusb20.so.1 was renamed to
	 libusb.so.1.
	800070	March 9, 2009	8.0-CURRENT after merging IGMPv3 and
	 Source-Specific Multicast (SSM) to the IPv4
	 stack.
	800071	March 14, 2009	8.0-CURRENT after gcc was patched to use C99
	 inline semantics in c99 and gnu99 mode.
	800072	March 15, 2009	8.0-CURRENT after the IFF_NEEDSGIANT flag has
	 been removed; non-MPSAFE network device drivers are no
	 longer supported.
	800073	March 18, 2009	8.0-CURRENT after the dynamic string token
	 substitution has been implemented for rpath and needed
	 paths.
	800074	March 24, 2009	8.0-CURRENT after tcpdump 4.0.0 and
	 libpcap 1.0.0 import.
	800075	April 6, 2009	8.0-CURRENT after layout of structs vnet_net,
	 vnet_inet and vnet_ipfw has been changed.
	800076	April 9, 2009	8.0-CURRENT after adding delay profiles in
	 dummynet.
	800077	April 14, 2009	8.0-CURRENT after removing VOP_LEASE() and
	 vop_vector.vop_lease.
	800078	April 15, 2009	8.0-CURRENT after struct rt_weight fields have
	 been added to struct rt_metrics and struct
	 rt_metrics_lite, changing the layout of struct
	 rt_metrics_lite. A bump to RTM_VERSION was made, but
	 backed out.
	800079	April 15, 2009	8.0-CURRENT after struct llentry pointers are
	 added to struct route and struct route_in6.
	800080	April 15, 2009	8.0-CURRENT after layout of struct inpcb has been
	 changed.
	800081	April 19, 2009	8.0-CURRENT after the layout of struct
	 malloc_type has been changed.
	800082	April 21, 2009	8.0-CURRENT after the layout of struct ifnet has
	 changed, and with if_ref() and if_rele() ifnet
	 refcounting.
	800083	April 22, 2009	8.0-CURRENT after the implementation of a
	 low-level Bluetooth HCI API.
	800084	April 29, 2009	8.0-CURRENT after IPv6 SSM and MLDv2
	 changes.
	800085	April 30, 2009	8.0-CURRENT after enabling support for
	 VIMAGE kernel builds with one active image.
	800086	May 8, 2009	8.0-CURRENT after adding support for input lines
	 of arbitrarily length in patch(1).
	800087	May 11, 2009	8.0-CURRENT after some VFS KPI changes. The
	 thread argument has been removed from the FSD parts of
	 the VFS. VFS_* functions do not
	 need the context any more because it always refers to
	 curthread. In some special cases,
	 the old behavior is retained.
	800088	May 20, 2009	8.0-CURRENT after net80211 monitor mode
	 changes.
	800089	May 23, 2009	8.0-CURRENT after adding UDP control block
	 support.
	800090	May 23, 2009	8.0-CURRENT after virtualizing interface
	 cloning.
	800091	May 27, 2009	8.0-CURRENT after adding hierarchical jails
	 and removing global securelevel.
	800092	May 29, 2009	8.0-CURRENT after changing
	 sx_init_flags() KPI. The
	 SX_ADAPTIVESPIN is retired and a
	 new SX_NOADAPTIVE flag is
	 introduced to handle the reversed
	 logic.
	800093	May 29, 2009	8.0-CURRENT after adding mnt_xflag to
	 struct mount.
	800094	May 30, 2009	8.0-CURRENT after adding
	 VOP_ACCESSX(9).
	800095	May 30, 2009	8.0-CURRENT after changing the polling KPI.
	 The polling handlers now return the number of packets
	 processed. A new
	 IFCAP_POLLING_NOCOUNT is also
	 introduced to specify that the return value is
	 not significant and the counting should be
	 skipped.
	800096	June 1, 2009	8.0-CURRENT after updating to the new netisr
	 implementation and after changing the way we
	 store and access FIBs.
	800097	June 8, 2009	8.0-CURRENT after the introduction of vnet
	 destructor hooks and infrastructure.
	800097	June 11, 2009	8.0-CURRENT after the introduction of netgraph
	 outbound to inbound path call detection and queuing,
	 which also changed the layout of struct
	 thread.
	800098	June 14, 2009	8.0-CURRENT after OpenSSL 0.9.8k import.
	800099	June 22, 2009	8.0-CURRENT after NGROUPS update and moving
	 route virtualization into its own VImage
	 module.
	800100	June 24, 2009	8.0-CURRENT after SYSVIPC ABI change.
	800101	June 29, 2009	8.0-CURRENT after the removal of the
	 /dev/net/* per-interface character
	 devices.
	800102	July 12, 2009	8.0-CURRENT after padding was added to
	 struct sackhint, struct tcpcb, and struct
	 tcpstat.
	800103	July 13, 2009	8.0-CURRENT after replacing struct tcpopt
	 with struct toeopt in the TOE driver interface
	 to the TCP syncache.
	800104	July 14, 2009	8.0-CURRENT after the addition of the
	 linker-set based per-vnet allocator.
	800105	July 19, 2009	8.0-CURRENT after version bump for all
	 shared libraries that do not have symbol versioning
	 turned on.
	800106	July 24, 2009	8.0-CURRENT after introduction of OBJT_SG
	 VM object type.
	800107	August 2, 2009	8.0-CURRENT after making the newbus subsystem
	 Giant free by adding the newbus sxlock and
	 8.0-RELEASE.
	800108	November 21, 2009	8.0-STABLE after implementing EVFILT_USER kevent
	 filter.
	800500	January 7, 2010	8.0-STABLE after
	 __FreeBSD_version bump to make
	 pkg_add -r use
	 packages-8-stable.
	800501	January 24, 2010	8.0-STABLE after change of the
	 scandir(3) and
	 alphasort(3) prototypes to
	 conform to SUSv4.
	800502	January 31, 2010	8.0-STABLE after addition of
	 sigpause(3).
	800503	February 25, 2010	8.0-STABLE after addition of SIOCGIFDESCR
	 and SIOCSIFDESCR ioctls to network interfaces. These
	 ioctl can be used to manipulate interface description,
	 as inspired by OpenBSD.
	800504	March 1, 2010	8.0-STABLE after MFC of importing x86emu, a
	 software emulator for real mode x86 CPU from
	 OpenBSD.
	800505	May 18, 2010	8.0-STABLE after MFC of adding liblzma, xz,
	 xzdec, and lzmainfo.
	801000	June 14, 2010	8.1-RELEASE
	801500	June 14, 2010	8.1-STABLE after 8.1-RELEASE.
	801501	November 3, 2010	8.1-STABLE after KBI change in struct sysentvec,
	 and implementation of PL_FLAG_SCE/SCX/EXEC/SI and
	 pl_siginfo for ptrace(PT_LWPINFO) .
	802000	December 22, 2010	8.2-RELEASE
	802500	December 22, 2010	8.2-STABLE after 8.2-RELEASE.
	802501	February 28, 2011	8.2-STABLE after merging DTrace changes,
	 including support for userland tracing.
	802502	March 6, 2011	8.2-STABLE after merging log2 and log2f
	 into libm.
	802503	May 1, 2011	8.2-STABLE after upgrade of the gcc to the last
	 GPLv2 version from the FSF gcc-4_2-branch.
	802504	May 28, 2011	8.2-STABLE after introduction of the KPI and
	 supporting infrastructure for modular congestion
	 control.
	802505	May 28, 2011	8.2-STABLE after introduction of Hhook and Khelp
	 KPIs.
	802506	May 28, 2011	8.2-STABLE after addition of OSD to struct
	 tcpcb.
	802507	June 6, 2011	8.2-STABLE after ZFS v28 import.
	802508	June 8, 2011	8.2-STABLE after removal of the schedtail event
	 handler and addition of the sv_schedtail method to
	 struct sysvec.
	802509	July 14, 2011	8.2-STABLE after merging the SSSE3 support
	 into binutils.
	802510	July 19, 2011	8.2-STABLE after addition of
	 RFTSIGZMB flag for
	 rfork(2).
	802511	September 9, 2011	8.2-STABLE after addition of automatic detection
	 of USB mass storage devices which do not support the
	 no synchronize cache SCSI command.
	802512	September 10, 2011	8.2-STABLE after merging of
	 re-factoring of auto-quirk.
	802513	October 25, 2011	8.2-STABLE after merging of the MAP_PREFAULT_READ
	 flag to mmap(2).
	802514	November 16, 2011	8.2-STABLE after merging of
	 addition of posix_fallocate(2) syscall.
	802515	January 6, 2012	8.2-STABLE after merging of addition of the
	 posix_fadvise(2) system call.
	802516	January 16, 2012	8.2-STABLE after merging gperf 3.0.3
	802517	February 15, 2012	8.2-STABLE after introduction of the new
	 extensible sysctl(3) interface NET_RT_IFLISTL
	 to query address lists (rev
	 231769).
	803000	March 3, 2012	8.3-RELEASE.
	803500	March 3, 2012	8.3-STABLE after branching releng/8.3
	 (RELENG_8_3).
	804000	March 28, 2013	8.4-RELEASE.
	804500	March 28, 2013	8.4-STABLE after 8.4-RELEASE.
	804504	September 9, 2014	8.4-STABLE after FreeBSD-SA-14:18
	 (rev 271305).
	804505	September 16, 2014	8.4-STABLE after FreeBSD-SA-14:19
	 (rev 271668).
	804506	October 21, 2014	8.4-STABLE after FreeBSD-SA-14:21
	 (rev 273413).
	804507	November 4, 2014	8.4-STABLE after FreeBSD-SA-14:23, FreeBSD-SA-14:24,
	 and FreeBSD-SA-14:25 (rev
	 274162).
	804508	February 25, 2015	8-STABLE after FreeBSD-EN-15:01.vt,
	 FreeBSD-EN-15:02.openssl, FreeBSD-EN-15:03.freebsd-update,
	 FreeBSD-SA-15:04.igmp, and FreeBSD-SA-15:05.bind (rev
	 279287).
	900000	August 22, 2009	9.0-CURRENT.
	900001	September 8, 2009	9.0-CURRENT after importing x86emu, a software
	 emulator for real mode x86 CPU from OpenBSD.
	900002	September 23, 2009	9.0-CURRENT after implementing the EVFILT_USER
	 kevent filter functionality.
	900003	December 2, 2009	9.0-CURRENT after addition of
	 sigpause(3) and PIE
	 support in csu.
	900004	December 6, 2009	9.0-CURRENT after addition of libulog and its
	 libutempter compatibility interface.
	900005	December 12, 2009	9.0-CURRENT after addition of sleepq_sleepcnt(), which can be used to query the number of waiters on a specific waiting queue.
	900006	January 4, 2010	9.0-CURRENT after change of the
	 scandir(3) and
	 alphasort(3) prototypes to
	 conform to SUSv4.
	900007	January 13, 2010	9.0-CURRENT after the removal of utmp(5) and
	 the addition of utmpx (see
	 getutxent(3)) for improved
	 logging of user logins and system events.
	900008	January 20, 2010	9.0-CURRENT after the import of BSDL bc/dc and
	 the deprecation of GNU bc/dc.
	900009	January 26, 2010	9.0-CURRENT after the addition of SIOCGIFDESCR
	 and SIOCSIFDESCR ioctls to network interfaces. These
	 ioctl can be used to manipulate interface description,
	 as inspired by OpenBSD.
	900010	March 22, 2010	9.0-CURRENT after the import of zlib
	 1.2.4.
	900011	April 24, 2010	9.0-CURRENT after adding soft-updates
	 journalling.
	900012	May 10, 2010	9.0-CURRENT after adding liblzma, xz, xzdec,
	 and lzmainfo.
	900013	May 24, 2010	9.0-CURRENT after bringing in USB fixes for
	 linux(4).
	900014	June 10, 2010	9.0-CURRENT after adding Clang.
	900015	July 22, 2010	9.0-CURRENT after the import of BSD grep.
	900016	July 28, 2010	9.0-CURRENT after adding mti_zone to
	 struct malloc_type_internal.
	900017	August 23, 2010	9.0-CURRENT after changing back default grep to
	 GNU grep and adding WITH_BSD_GREP knob.
	900018	August 24, 2010	9.0-CURRENT after the
	 pthread_kill(3) -generated signal
	 is identified as SI_LWP in si_code. Previously,
	 si_code was SI_USER.
	900019	August 28, 2010	9.0-CURRENT after addition of the
	 MAP_PREFAULT_READ flag to
	 mmap(2).
	900020	September 9, 2010	9.0-CURRENT after adding drain functionality
	 to sbufs, which also changed the layout of
	 struct sbuf.
	900021	September 13, 2010	9.0-CURRENT after DTrace has grown support
	 for userland tracing.
	900022	October 2, 2010	9.0-CURRENT after addition of the BSDL man
	 utilities and retirement of GNU/GPL man
	 utilities.
	900023	October 11, 2010	9.0-CURRENT after updating xz to git 20101010
	 snapshot.
	900024	November 11, 2010	9.0-CURRENT after libgcc.a was replaced
	 by libcompiler_rt.a.
	900025	November 12, 2010	9.0-CURRENT after the introduction of the
	 modularised congestion control.
	900026	November 30, 2010	9.0-CURRENT after the introduction of Serial
	 Management Protocol (SMP) passthrough and the
	 XPT_SMP_IO and XPT_GDEV_ADVINFO CAM CCBs.
	900027	December 5, 2010	9.0-CURRENT after the addition of log2 to
	 libm.
	900028	December 21, 2010	9.0-CURRENT after the addition of the Hhook
	 (Helper Hook), Khelp (Kernel Helpers) and Object
	 Specific Data (OSD) KPIs.
	900029	December 28, 2010	9.0-CURRENT after the modification of the TCP
	 stack to allow Khelp modules to interact with it via
	 helper hook points and store per-connection data in
	 the TCP control block.
	900030	January 12, 2011	9.0-CURRENT after the update of libdialog to
	 version 20100428.
	900031	February 7, 2011	9.0-CURRENT after the addition of
	 pthread_getthreadid_np(3).
	900032	February 8, 2011	9.0-CURRENT after the removal of the uio_yield
	 prototype and symbol.
	900033	February 18, 2011	9.0-CURRENT after the update of binutils to
	 version 2.17.50.
	900034	March 8, 2011	9.0-CURRENT after the struct sysvec
	 (sv_schedtail) changes.
	900035	March 29, 2011	9.0-CURRENT after the update of base gcc and
	 libstdc++ to the last GPLv2 licensed revision.
	900036	April 18, 2011	9.0-CURRENT after the removal of libobjc and
	 Objective-C support from the base system.
	900037	May 13, 2011	9.0-CURRENT after importing the libprocstat(3)
	 library and fuser(1) utility to the base
	 system.
	900038	May 22, 2011	9.0-CURRENT after adding a lock flag argument to
	 VFS_FHTOVP(9).
	900039	June 28, 2011	9.0-CURRENT after importing pf from OpenBSD
	 4.5.
	900040	July 19, 2011	Increase default MAXCPU for FreeBSD to 64 on
	 amd64 and ia64 and to 128 for XLP (mips).
	900041	August 13, 2011	9.0-CURRENT after the implementation of Capsicum
	 capabilities; fget(9) gains a rights argument.
	900042	August 28, 2011	Bump shared libraries' version numbers for
	 libraries whose ABI has changed in preparation for
	 9.0.
	900043	September 2, 2011	Add automatic detection of USB mass storage
	 devices which do not support the no synchronize cache
	 SCSI command.
	900044	September 10, 2011	Re-factor auto-quirk. 9.0-RELEASE.
	900045	January 2, 2012	9-CURRENT after MFC of true/false from
	 1000002.
	900500	January 2, 2012	9.0-STABLE.
	900501	January 6, 2012	9.0-STABLE after merging of addition of the
	 posix_fadvise(2) system call.
	900502	January 16, 2012	9.0-STABLE after merging gperf 3.0.3
	900503	February 15, 2012	9.0-STABLE after introduction of the new
	 extensible sysctl(3) interface NET_RT_IFLISTL
	 to query address lists (rev
	 231768).
	900504	March 3, 2012	9.0-STABLE after changes related to mounting
	 of filesystem inside a jail (rev
	 232728).
	900505	March 13, 2012	9.0-STABLE after introduction of new tcp(4)
	 socket options: TCP_KEEPINIT, TCP_KEEPIDLE,
	 TCP_KEEPINTVL, and TCP_KEEPCNT (rev
	 232945).
	900506	May 22, 2012	9.0-STABLE after introduction of the
	 quick_exit function and
	 related changes required for C++11 (rev
	 235786).
	901000	August 5, 2012	9.1-RELEASE.
	901500	August 6, 2012	9.1-STABLE after branching releng/9.1
	 (RELENG_9_1).
	901501	November 11, 2012	9.1-STABLE after LIST_PREV() added to queue.h
	 (rev 242893) and KBI change in USB
	 serial devices (rev
	 240659).
	901502	November 28, 2012	9.1-STABLE after USB serial jitter buffer
	 requires rebuild of USB serial device modules.
	901503	February 21, 2013	9.1-STABLE after USB moved to the driver
	 structure requiring a rebuild of all USB modules.
	 Also indicates the presence of nmtree.
	901504	March 15, 2013	9.1-STABLE after install gained -l, -M, -N and
	 related flags and cat gained the -l option.
	901505	June 13, 2013	9.1-STABLE after fixes in ctfmerge bootstrapping
	 (rev 249243).
	902001	August 3, 2013	releng/9.2 branched from
	 stable/9
	 (rev 253912).
	902501	August 2, 2013	9.2-STABLE after creation of
	 releng/9.2 branch
	 (rev 253913).
	902502	August 26, 2013	9.2-STABLE after inclusion of the
	 PIM_RESCAN CAM path inquiry flag
	 (rev 254938).
	902503	August 27, 2013	9.2-STABLE after inclusion of the
	 SI_UNMAPPED cdev flag
	 (rev 254979).
	902504	October 22, 2013	9.2-STABLE after inclusion of support for
	 “first boot” rc(8) scripts
	 (rev 256917).
	902505	December 12, 2013	9.2-STABLE after Heimdal encoding fix
	 (rev 259448).
	902506	December 31, 2013	9-STABLE after MAP_STACK fixes
	 (rev 260082).
	902507	March 5, 2014	9-STABLE after upgrade of libc++ to 3.4 release
	 (rev 262801).
	902508	March 14, 2014	9-STABLE after merge of the Radeon KMS driver
	 (rev 263170).
	902509	March 21, 2014	9-STABLE after upgrade of llvm/clang to 3.4 release
	 (rev 263509).
	902510	March 27, 2014	9-STABLE after merge of the vt(4) driver
	 (rev 263818).
	902511	March 27, 2014	9-STABLE after FreeBSD-SA-14:06.openssl
	 (rev 264289).
	902512	April 30, 2014	9-STABLE after FreeBSD-SA-14:08.tcp
	 (rev 265123).
	903000	June 20, 2014	9-RC1 releng/9.3 branch
	 (rev 267656).
	903500	June 20, 2014	9.3-STABLE releng/9.3 branch
	 (rev 267657).
	903501	July 8, 2014	9-STABLE after FreeBSD-SA-14:17.kmem
	 (rev 268433).
	903502	August 19, 2014	9-STABLE after SOCK_DGRAM
	 bug fix (rev 269789).
	903503	September 9, 2014	9-STABLE after FreeBSD-SA-14:18
	 (rev 269687).
	903504	September 16, 2014	9-STABLE after FreeBSD-SA-14:19
	 (rev 271668).
	903505	October 21, 2014	9-STABLE after FreeBSD-SA-14:20, FreeBSD-SA-14:21,
	 and FreeBSD-SA-14:22 (rev
	 273412).
	903506	November 4, 2014	9-STABLE after FreeBSD-SA-14:23, FreeBSD-SA-14:24,
	 and FreeBSD-SA-14:25 (rev
	 274162).
	903507	December 13, 2014	9-STABLE after merging an important fix to the LLVM
	 vectorizer, which could lead to buffer overruns in some
	 cases (rev 275742).
	903508	February 25, 2015	9-STABLE after FreeBSD-EN-15:01.vt,
	 FreeBSD-EN-15:02.openssl, FreeBSD-EN-15:03.freebsd-update,
	 FreeBSD-SA-15:04.igmp, and FreeBSD-SA-15:05.bind (rev
	 279287).
	903509	February 29, 2016	9-STABLE after bumping the default value of
	 compat.linux.osrelease to
	 2.6.18 to support the linux-c6-* ports
	 out of the box (rev 296219).
	1000000	September 26, 2011	10.0-CURRENT.
	1000001	November 4, 2011	10-CURRENT after addition of the posix_fadvise(2)
	 system call.
	1000002	December 12, 2011	10-CURRENT after defining boolean true/false in
	 sys/types.h, sizeof(bool) may have changed (rev
	 228444). 10-CURRENT after
	 xlocale.h was introduced (rev
	 227753).
	1000003	December 16, 2011	10-CURRENT after major changes to carp(4),
	 changing size of struct in_aliasreq,
	 struct in6_aliasreq (rev
	 228571) and straitening arguments
	 check of SIOCAIFADDR (rev
	 228574).
	1000004	January 1, 2012	10-CURRENT after the removal of skpc(9) and the
	 addition of memcchr(9) (rev
	 229200).
	1000005	January 16, 2012	10-CURRENT after the removal of support for
	 SIOCSIFADDR, SIOCSIFNETMASK, SIOCSIFBRDADDR,
	 SIOCSIFDSTADDR ioctls (rev
	 230207).
	1000006	January 26, 2012	10-CURRENT after introduction of read capacity
	 data asynchronous notification in the cam(4) layer
	 (rev 230590).
	1000007	February 5, 2012	10-CURRENT after introduction of new tcp(4)
	 socket options: TCP_KEEPINIT, TCP_KEEPIDLE,
	 TCP_KEEPINTVL, and TCP_KEEPCNT (rev
	 231025).
	1000008	February 11, 2012	10-CURRENT after introduction of the new
	 extensible sysctl(3) interface NET_RT_IFLISTL
	 to query address lists (rev
	 231505).
	1000009	February 25, 2012	10-CURRENT after import of libarchive 3.0.3
	 (rev 232153).
	1000010	March 31, 2012	10-CURRENT after xlocale cleanup (rev
	 233757).
	1000011	April 16, 2012	10-CURRENT import of LLVM/Clang 3.1 trunk r154661
	 (rev 234353).
	1000012	May 2, 2012	10-CURRENT jemalloc import
	 (rev 234924).
	1000013	May 22, 2012	10-CURRENT after byacc import
	 (rev 235788).
	1000014	June 27, 2012	10-CURRENT after BSD sort becoming the default
	 sort (rev 237629).
	1000015	July 12, 2012	10-CURRENT after import of OpenSSL 1.0.1c
	 (rev 238405).
	(not changed)	July 13, 2012	10-CURRENT after the fix for LLVM/Clang 3.1
	 regression (rev 238429).
	1000016	August 8, 2012	10-CURRENT after KBI change in ucom(4)
	 (rev 239179).
	1000017	August 8, 2012	10-CURRENT after adding streams feature to the
	 USB stack (rev 239214).
	1000018	September 8, 2012	10-CURRENT after major rewrite of pf(4)
	 (rev 240233).
	1000019	October 6, 2012	10-CURRENT after pfil(9) KBI/KPI changed
	 to supply packets in net byte order to AF_INET
	 filter hooks (rev 241245).
	1000020	October 16, 2012	10-CURRENT after the network interface cloning
	 KPI changed and struct if_clone becoming opaque (rev
	 241610).
	1000021	October 22, 2012	10-CURRENT after removal of support for
	 non-MPSAFE filesystems and addition of support for
	 FUSEFS (rev
	 241519,
	 241897).
	1000022	October 22, 2012	10-CURRENT after the entire IPv4 stack switched
	 to network byte order for IP packet header storage
	 (rev 241913).
	1000023	November 5, 2012	10-CURRENT after jitter buffer in the common USB
	 serial driver code, to temporarily store characters
	 if the TTY buffer is full. Add flow stop and start
	 signals when this happens (rev
	 242619).
	1000024	November 5, 2012	10-CURRENT after clang was made the default
	 compiler on i386 and amd64
	 (rev 242624).
	1000025	November 17, 2012	10-CURRENT after the sin6_scope_id member
	 variable in struct sockaddr_in6 was changed to being
	 filled by the kernel before passing the structure to
	 the userland via sysctl or routing socket. This means
	 the KAME-specific embedded scope id in
	 sin6_addr.s6_addr[2] is always cleared in userland
	 application (rev 243443).
	1000026	January 11, 2013	10-CURRENT after install gained the -N flag (rev
	 245313). May also be used to
	 indicate the presence of nmtree.
	1000027	January 29, 2013	10-CURRENT after cat gained the -l flag (rev
	 246083).
	1000028	February 13, 2013	10-CURRENT after USB moved to the driver
	 structure requiring a rebuild of all USB modules (rev
	 246759).
	1000029	March 4, 2013	10-CURRENT after the introduction of tickless
	 callout facility which also changed the layout of struct
	 callout (rev 247777).
	1000030	March 12, 2013	10-CURRENT after KPI breakage introduced in the
	 VM subsystem to support read/write locking (rev
	 248084).
	1000031	April 26, 2013	10-CURRENT after the dst parameter of the
	 ifnet if_output method was
	 changed to take const qualifier (rev
	 249925).
	1000032	May 1, 2013	10-CURRENT after the introduction of the
	 accept4 (rev
	 250154) and
	 pipe2 (rev
	 250159) system calls.
	1000033	May 21, 2013	10-CURRENT after flex 2.5.37 import (rev
	 250881).
	1000034	June 3, 2013	10-CURRENT after the addition of these
	 functions to libm: cacos,
	 cacosf,
	 cacosh,
	 cacoshf,
	 casin,
	 casinf,
	 casinh,
	 casinhf,
	 catan,
	 catanf,
	 catanh,
	 catanhf,
	 logl,
	 log2l,
	 log10l,
	 log1pl,
	 expm1l (rev
	 251294).
	1000035	June 8, 2013	10-CURRENT after the introduction of the
	 aio_mlock system call (rev
	 251526).
	1000036	July 9, 2013	10-CURRENT after the addition of a new function
	 to the kernel GSSAPI module's
	 function call interface (rev
	 253049).
	1000037	July 9, 2013	10-CURRENT after the migration of statistics
	 structures to PCPU counters.
	 Changed structures include: ahstat,
	 arpstat,
	 espstat,
	 icmp6_ifstat,
	 icmp6stat,
	 in6_ifstat,
	 ip6stat,
	 ipcompstat,
	 ipipstat,
	 ipsecstat,
	 mrt6stat,
	 mrtstat,
	 pfkeystat,
	 pim6stat,
	 pimstat,
	 rip6stat,
	 udpstat (rev
	 253081).
	1000038	July 16, 2013	10-CURRENT after making ARM
	 EABI the default ABI on arm,
	 armeb, armv6, and armv6eb architectures
	 (rev 253396).
	1000039	July 22, 2013	10-CURRENT after CAM
	 and mps(4) driver scanning changes
	 (rev 253549).
	1000040	July 24, 2013	10-CURRENT after addition of libusb
	 pkgconf files (rev 253638).
	1000041	August 5, 2013	10-CURRENT after change from
	 time_second to
	 time_uptime
	 in PF_INET6
	 (rev 253970).
	1000042	August 9, 2013	10-CURRENT after VM subsystem change to unify
	 soft and hard busy mechanisms
	 (rev 254138).
	1000043	August 13, 2013	10-CURRENT after WITH_ICONV is
	 enabled by default. A new src.conf(5) option,
	 WITH_LIBICONV_COMPAT (disabled by
	 default) adds libiconv_open to
	 provide compatibility with the
	 libiconv port (rev
	 254273).
	1000044	August 15, 2013	10-CURRENT after libc.so
	 conversion to an ld(1)
	 script (rev
	 251668,
	 254358).
	1000045	August 15, 2013	10-CURRENT after devfs programming interface
	 change by replacing the cdevsw flag
	 D_UNMAPPED_IO with the struct cdev
	 flag SI_UNMAPPED (rev
	 254389).
	1000046	August 19, 2013	10-CURRENT after addition of
	 M_PROTO[9-12] and removal of
	 M_FRAG|M_FIRSTFRAG|M_LASTFRAG
	 mbuf flags (rev 254524,
	 254526).
	1000047	August 21, 2013	10-CURRENT after stat(2) update to allow
	 storing some Windows/DOS and CIFS file attributes
	 as stat(2) flags (rev
	 254627).
	1000048	August 22, 2013	10-CURRENT after modification of structure
	 xsctp_inpcb
	 (rev 254672).
	1000049	August 24, 2013	10-CURRENT after physio(9) support for
	 devices that do not function properly with split
	 I/O, such as sa(4) (rev
	 254760).
	1000050	August 24, 2013	10-CURRENT after modifications of structure
	 mbuf (rev
	 254780,
	 254799,
	 254804,
	 254807
	 254842).
	1000051	August 25, 2013	10-CURRENT after Radeon KMS driver import
	 (rev 254885,
	 254887).
	1000052	September 3, 2013	10-CURRENT after import of NetBSD
	 libexecinfo is connected to the
	 build (rev 255180).
	1000053	September 6, 2013	10-CURRENT after API and ABI changes to the
	 Capsicum framework (rev
	 255305).
	1000054	September 6, 2013	10-CURRENT after gcc and
	 libstdc++ are no longer built by
	 default (rev 255321).
	1000055	September 6, 2013	10-CURRENT after addition of
	 MMAP_32BIT mmap(2) flag
	 (rev 255426).
	1000100	December 7, 2013	releng/10.0 branched from
	 stable/10
	 (rev 259065).
	1000500	October 10, 2013	10-STABLE after branch from head/
	 (rev 256283).
	1000501	October 22, 2013	10-STABLE after addition of first-boot rc(8)
	 support (rev 256916).
	1000502	November 20, 2013	10-STABLE after removal of iconv symbols from
	 libc.so.7
	 (rev 258398).
	1000510	December 7, 2013	releng/10.0 __FreeBSD_version
	 update to prevent the value from going backwards
	 (rev 259067).
	1000700	December 7, 2013	10-STABLE after releng/10.0 branch
	 (rev 259069).
	1000701	December 15, 2013	10.0-STABLE after Heimdal encoding fix
	 (rev 259447).
	1000702	December 31, 2013	10-STABLE after MAP_STACK fixes
	 (rev 260135).
	1000703	March 5, 2014	10-STABLE after upgrade of libc++ to 3.4 release
	 (rev 262801).
	1000704	March 7, 2014	10-STABLE after MFC of the vt(4) driver
	 (rev 262861).
	1000705	March 21, 2014	10-STABLE after upgrade of llvm/clang to 3.4 release
	 (rev 263508).
	1000706	April 6, 2014	10-STABLE after GCC support for
	 __block definition (rev
	 264214).
	1000707	April 8, 2014	10-STABLE after FreeBSD-SA-14:06.openssl (rev
	 264289).
	1000708	April 30, 2014	10-STABLE after FreeBSD-SA-14:07.devfs,
	 FreeBSD-SA-14:08.tcp, and FreeBSD-SA-14:09.openssl (rev
	 265122).
	1000709	May 13, 2014	10-STABLE after support for UDP-Lite protocol (RFC
	 3828) (rev 265946).
	1000710	June 13, 2014	10-STABLE after changes to strcasecmp(3), moving
	 strcasecmp_l() and
	 strncasecmp_l() from
	 <string.h> to
	 <strings.h> for POSIX 2008
	 compliance (rev 267465).
	1000711	July 8, 2014	10-STABLE after FreeBSD-SA-14:17.kmem
	 (rev 268432).
	1000712	August 1, 2014	10-STABLE after nfsd(8) 4.1 merge
	 (rev 269398).
	1000713	August 3, 2014	10-STABLE after regex(3) library update
	 to add “>” and “<”
	 delimiters (rev 269484).
	1000714	August 3, 2014	10-STABLE after SOCK_DGRAM
	 bug fix (rev 269490).
	1000715	September 9, 2014	10-STABLE after FreeBSD-SA-14:18
	 (rev 269686).
	1000716	September 16, 2014	10-STABLE after FreeBSD-SA-14:19
	 (rev 271667).
	1000717	September 18, 2014	10-STABLE after i915 HW context support
	 (rev 271816).
	1001000	October 2, 2014	10.1-RC1 after releng/10.1 branch
	 (rev 272463).
	1001500	October 2, 2014	10-STABLE after releng/10.1 branch
	 (rev 272464).
	1001501	October 21, 2014	10-STABLE after FreeBSD-SA-14:20, FreeBSD-SA-14:22,
	 and FreeBSD-SA-14:23 (rev
	 273411).
	1001502	November 4, 2014	10-STABLE after FreeBSD-SA-14:23, FreeBSD-SA-14:24,
	 and FreeBSD-SA-14:25 (rev
	 274162).
	1001503	November 25, 2014	10-STABLE after merging new libraries/utilities (dpv
	 and figpar) for data throughput visualization (rev
	 275040).
	1001504	December 13, 2014	10-STABLE after merging an important fix to the LLVM
	 vectorizer, which could lead to buffer overruns in some
	 cases (rev 275742).
	1001505	January 3, 2015	10-STABLE after merging some arm constants in r276312
	 (rev 276633).
	1001506	January 12, 2015	10-STABLE after merging max table size update for
	 yacc (rev 277087).
	1001507	January 27, 2015	10-STABLE after changes to the UDP tunneling callback
	 to provide a context pointer and the source sockaddr (rev
	 277790).
	1001508	February 18, 2015	10-STABLE after addition of the
	 CDAI_TYPE_EXT_INQ request type (rev
	 278974).
	1001509	February 25, 2015	10-STABLE after FreeBSD-EN-15:01.vt,
	 FreeBSD-EN-15:02.openssl, FreeBSD-EN-15:03.freebsd-update,
	 FreeBSD-SA-15:04.igmp, and FreeBSD-SA-15:05.bind (rev
	 279287).
	1001511	19 March, 2015	10-STABLE after sys/capability.h
	 is renamed to sys/capsicum.h (rev
	 280224/).
	1001512	24 March, 2015	10-STABLE after addition of new mtio(4), sa(4) ioctls
	 (rev 281954).
	1001513	24 April, 2015	10-STABLE after starting the process of removing the
	 use of the deprecated "M_FLOWID" flag from the network
	 code (rev 281955).
	1002000	24 July, 2015	releng/10.2 branched from
	 10-STABLE (rev 285830).
	1002500	24 July, 2015	10-STABLE after releng/10.2
	 branched from 10-STABLE (rev
	 285831).
	1002501	8 October, 2015	10-STABLE after merge of ZFS changes that affected
	 the internal interface of zfeature_info structure (rev
	 28857).
	1100000	October 10, 2013	11.0-CURRENT
	 (rev 256284).
	1100001	October 19, 2013	11.0-CURRENT after addition of support for "first
	 boot" rc.d scripts, so ports can make
	 use of this (rev 256776).
	1100002	November 5, 2013	11.0-CURRENT after dropping support for historic
	 ioctls (rev 257696).
	1100003	November 17, 2013	11.0-CURRENT after iconv changes
	 (rev 258284).
	1100004	December 15, 2013	11.0-CURRENT after the behavior change of
	 gss_pseudo_random introduced in
	 r259286 (rev 259424).
	1100005	December 28, 2013	11.0-CURRENT after r259951 - Do not coalesce entries
	 in vm_map_stack() (rev
	 260010).
	1100006	January 28, 2014	11.0-CURRENT after upgrades of libelf and libdwarf
	 (rev 261246).
	1100007	January 30, 2014	11.0-CURRENT after upgrade of libc++ to 3.4 release
	 (rev 261283).
	1100008	February 14, 2014	11.0-CURRENT after libc++ 3.4 ABI compatibility fix
	 (rev 261801).
	1100009	February 16, 2014	11.0-CURRENT after upgrade of llvm/clang to 3.4
	 release (rev 261991).
	1100010	February 28, 2014	11.0-CURRENT after upgrade of ncurses to 5.9 release
	 (rev 262629).
	1100011	March 13, 2014	11.0-CURRENT after ABI change in struct if_data
	 (rev 263102).
	1100012	March 14, 2014	11.0-CURRENT after removal of Novell IPX protocol
	 support (rev 263140).
	1100013	March 14, 2014	11.0-CURRENT after removal of AppleTalk protocol
	 support (rev 263152).
	1100014	March 16, 2014	11.0-CURRENT after renaming
	 <sys/capability.h> to
	 <sys/capsicum.h> to avoid a
	 clash with similarly named headers in other operating
	 systems. A compatibility header is left in place to limit
	 build breakage, but will be deprecated in due course
	 (rev 263235).
	1100015	March 22, 2014	11.0-CURRENT after cnt rename to
	 vm_cnt (rev
	 263620).
	1100016	March 23, 2014	11.0-CURRENT after addition of
	 armv6hf TARGET_ARCH
	 (rev 263660).
	1100017	April 4, 2014	11.0-CURRENT after GCC support for
	 __block definition (rev
	 264121).
	1100018	April 6, 2014	11.0-CURRENT after support for UDP-Lite protocol (RFC
	 3828) (rev 264212).
	1100019	April 8, 2014	11.0-CURRENT after FreeBSD-SA-14:06.openssl (rev
	 264265).
	1100020	May 1, 2014	11.0-CURRENT after removing lindev in favor of having
	 /dev/full by default (rev
	 265212).
	1100021	May 6, 2014	11.0-CURRENT after src.opts.mk
	 changes, decoupling make.conf(5) from
	 buildworld (rev
	 265419).
	1100022	May 30, 2014	11.0-CURRENT after changes to strcasecmp(3),
	 moving strcasecmp_l() and
	 strncasecmp_l() from
	 <string.h> to
	 <strings.h> for POSIX 2008
	 compliance (rev 266865).
	1100023	June 13, 2014	11.0-CURRENT after the CUSE library and kernel module
	 have been attached to the build by default (rev
	 267440).
	1100024	June 27, 2014	11.0-CURRENT after sysctl(3)
	 API change (rev
	 267992).
	1100025	June 30, 2014	11.0-CURRENT after regex(3) library update
	 to add “>” and “<”
	 delimiters (rev 268066).
	1100026	July 1, 2014	11.0-CURRENT after the internal interface between the
	 NFS modules, including the krpc, was changed by (rev
	 268115).
	1100027	July 8, 2014	11.0-CURRENT after FreeBSD-SA-14:17.kmem
	 (rev 268431).
	1100028	July 21, 2014	11.0-CURRENT after hdestroy()
	 compliance fix changed ABI (rev
	 268945).
	1100029	August 3, 2014	11.0-CURRENT after SOCK_DGRAM
	 bug fix (rev 269489).
	1100030	September 1, 2014	11.0-CURRENT after SOCK_RAW
	 sockets were changed to not modify packets at all (rev
	 270929).
	1100031	September 9, 2014	11.0-CURRENT after FreeBSD-SA-14:18.openssl
	 (rev 269686).
	1100032	September 11, 2014	11.0-CURRENT after API changes to
	 ifa_ifwithbroadaddr,
	 ifa_ifwithdstaddr,
	 ifa_ifwithnet, and
	 ifa_ifwithroute (rev
	 271438).
	1100033	September 9, 2014	11.0-CURRENT after changing
	 access, eaccess, and
	 faccessat to validate the mode argument
	 (rev 271657).
	1100034	September 16, 2014	11.0-CURRENT after FreeBSD-SA-14:19.tcp
	 (rev 271666).
	1100035	September 17, 2014	11.0-CURRENT after i915 HW context support
	 (rev 271705).
	1100036	September 17, 2014	Version bump to have ABI note distinguish binaries
	 ready for strict mmap(2) flags checking
	 (rev 271724).
	1100037	October 6, 2014	11.0-CURRENT after addition of
	 explicit_bzero(3) (rev
	 272673).
	1100038	October 11, 2014	11.0-CURRENT after cleanup of TCP wrapper headers
	 (rev 272951).
	1100039	October 18, 2014	11.0-CURRENT after removal of
	 MAP_RENAME and
	 MAP_NORESERVE (rev
	 273250).
	1100040	October 21, 2014	11.0-CURRENT after FreeBSD-SA-14:23 (rev
	 273146).
	1100041	October 30, 2014	11.0-CURRENT after API changes to
	 syscall_register,
	 syscall32_register,
	 syscall_register_helper and
	 syscall32_register_helper (rev
	 273707).
	1100042	November 3, 2014	11.0-CURRENT after a change to struct
	 tcpcb (rev
	 274046).
	1100043	November 4, 2014	11.0-CURRENT after enabling vt(4) by default
	 (rev 274085).
	1100044	November 4, 2014	11.0-CURRENT after adding new libraries/utilities
	 (dpv and figpar) for data throughput visualization (rev
	 274116).
	1100045	November 4, 2014	11.0-CURRENT after FreeBSD-SA-14:23,
	 FreeBSD-SA-14:24, and FreeBSD-SA-14:25 (rev
	 274162).
	1100046	November 13, 2014	11.0-CURRENT after kern_poll
	 signature change (rev
	 274462).
	1100047	November 13, 2014	11.0-CURRENT after removal of no-at version
	 of VFS syscalls helpers, like kern_open
	 (rev 274476).
	1100048	December 1, 2014	11.0-CURRENT after starting the process of removing
	 the use of the deprecated "M_FLOWID" flag from the network
	 code (rev 275358).
	1100049	December 9, 2014	11.0-CURRENT after importing an important fix to the
	 LLVM vectorizer, which could lead to buffer overruns in
	 some cases (rev 275633).
	1100050	December 12, 2014	11.0-CURRENT after adding AES-ICM and AES-GCM to
	 OpenCrypto (rev 275732).
	1100051	December 23, 2014	11.0-CURRENT after removing old NFS client and server
	 code from the kernel (rev
	 276096).
	1100052	December 31, 2014	11.0-CURRENT after upgrade of clang, llvm and lldb to
	 3.5.0 release (rev 276479).
	1100053	January 7, 2015	11.0-CURRENT after MCLGET() gained a return value
	 (rev 276750).
	1100054	January 15, 2015	11.0-CURRENT after rewrite of callout subsystem
	 (rev 277213).
	1100055	January 22, 2015	11.0-CURRENT after reverting callout changes in
	 r277213 (rev 277528).
	1100056	January 23, 2015	11.0-CURRENT after addition of
	 futimens and
	 utimensat system calls
	 (rev 277610).
	1100057	January 29, 2015	11.0-CURRENT after removal of d_thread_t
	 (rev 277897).
	1100058	February 5, 2015	11.0-CURRENT after addition of support for probing
	 the SCSI VPD Extended Inquiry page (0x86)
	 (rev 278228).
	1100059	February 9, 2015	11.0-CURRENT after import of xz 5.2.0,
	 which added multi-threaded compression and lzma
	 gained libthr dependency
	 (rev 278433).
	1100060	February 16, 2015	11.0-CURRENT after forwarding
	 FBIO_BLANK
	 to framebuffer clients
	 (rev 278846).
	1100061	February 18, 2015	11.0-CURRENT after CDAI_FLAG_NONE
	 addition (rev 278964).
	1100062	February 23, 2015	11.0-CURRENT after mtio(4) and sa(4)
	 API and ioctl(2) additions
	 (rev 279221).
	1100063	March 7, 2015	11.0-CURRENT after adding mutex support to the
	 pps_ioctl() API in the kernel (rev
	 279728).
	1100064	March 7, 2015	11.0-CURRENT after adding PPS support to USB serial
	 drivers (rev 279729).
	1100065	March 15, 2015	11.0-CURRENT after upgrading clang, llvm and lldb to
	 3.6.0 (rev 280031).
	1100066	March 20, 2015	11.0-CURRENT after removal of SSLv2 support from
	 OpenSSL (rev 280306).
	1100067	March 25, 2015	11.0-CURRENT after removal of SSLv2 support from
	 fetch(1) and fetch(3) (rev
	 280630).
	1100068	April 6, 2015	11.0-CURRENT after change to net.inet6.ip6.mif6table
	 sysctl (rev 281172).
	1100069	April 15, 2015	11.0-CURRENT after removal of const qualifier from
	 iconv(3) (rev 281550).
	1100071	April 29, 2015	11.0-CURRENT after API/ABI change to
	 smb(4) (rev 281985).
	1100072	May 1, 2015	11.0-CURRENT after adding reallocarray(3) in
	 libc (rev 282314).
	1100073	May 8, 2015	11.0-CURRENT after extending the maximum number of
	 allowed PCM channels in a PCM stream to 127 and decreasing
	 the maximum number of sub-channels to 1 (rev
	 282650).
	1100074	May 25, 2015	11.0-CURRENT after adding preliminary support for
	 x86-64 Linux binaries (rev 283424),
	 and upgrading clang and llvm to 3.6.1 (rev
	 283526).
	1100075	May 27, 2015	11.0-CURRENT after dounmount() requiring a reference
	 on the passed struct mount (rev
	 283602).
	1100076	June 4, 2015	11.0-CURRENT after disabled generation of legacy
	 formatted password databases entries by default. (rev
	 283983).
	1100077	June 10, 2015	11.0-CURRENT after API changes to
	 lim_cur,
	 lim_max, and
	 lim_rlimit (rev
	 284215).
	1100079	August 18, 2015	11.0-CURRENT after import of jemalloc 4.0.0
	 (rev 286866).
	1100080	October 5, 2015	11.0-CURRENT after upgrading clang, llvm, lldb,
	 compiler-rt and libc++ to 3.7.0 (rev
	 288943).
	1100081	October 16, 2015	11.0-CURRENT after undating ZFS to support resumable
	 send/receive (rev r289362).
	1100085	October 30, 2015	11.0-CURRENT after import of OpenSSL 1.0.2d (rev
	 290207).
	1100088	November 7, 2015	11.0-CURRENT after string collation and locales
	 rework (rev 290495).
	1100089	November 7, 2015	11.0-CURRENT after API change to
	 sysctl_add_oid(9) (rev 290475
	 and r290505).
	1100090	November 10, 2015	11.0-CURRENT after API change to callout_stop macro;
	 (rev 290664).
	1100092	December 19, 2015	11.0-CURRENT after removal of vm_pageout_grow_cache
	 (rev 292469).
	1100093	December 30, 2015	11.0-CURRENT after removal of sys/crypto/sha2.h
	 (rev 292782).
	1100094	January 15, 2016	11.0-CURRENT after LinuxKPI PCI changes
	 (rev 294086).
	1100095	January 19, 2016	11.0-CURRENT after LRO optimizations
	 (rev 294327).
	1100096	January 21, 2016	11.0-CURRENT after LinuxKPI idr_* additions
	 (rev 294505).
	1100097	January 26, 2016	11.0-CURRENT after API change to dpv(3)
	 (rev 294860).
	1100098	February 16, 2016	11.0-CURRENT after API change to rman
	 (rev 294883).
	1100100	February 26, 2016	11.0-CURRENT after bus_alloc_resource_anywhere() API
	 addition (rev 296136).

注意:
Note that 2.2-STABLE sometimes identifies itself as
 “2.2.5-STABLE” after the 2.2.5-RELEASE. The
 pattern used to be year followed by the month, but we decided to
 change it to a more straightforward major/minor system starting
 from 2.2. This is because the parallel development on several
 branches made it infeasible to classify the releases merely by
 their real release dates. Do not worry about old -CURRENTs;
 they are listed here just for reference.

OEBPS/trademarks.xhtml
FreeBSD 是 FreeBSD 基金會的註冊商標。

UNIX 是 The Open Group 在美國和其他國家的註冊商標。

Sun, Sun Microsystems, Java, Java Virtual Machine, JDK, JRE, JSP, JVM, Netra, OpenJDK, Solaris, StarOffice, SunOS 和 VirtualBox 是 Sun Microsystems, Inc. 在美國和其他國家的註冊商標。

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

OEBPS/legalnotice.xhtml
版權所有

Redistribution and use in source (XML DocBook) and 'compiled'
 forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without
 modification, are permitted provided that the following conditions are
 met:

		Redistributions of source code (XML DocBook) must retain the
 above copyright notice, this list of conditions and the following
 disclaimer as the first lines of this file unmodified.

		Redistributions in compiled form (transformed to other DTDs,
 converted to PDF, PostScript, RTF and other formats) must
 reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other
 materials provided with the distribution.

重要:

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION
 PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.

